
Cogl 2.0 Reference Manual i

Cogl 2.0 Reference Manual

Cogl 2.0 Reference Manual ii

Copyright © 2008 OpenedHand LTD

Copyright © 2009, 2010, 2011, 2012, 2013 Intel Corporation

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. You may obtain a copy of the GNU Free Documentation License from the Free Software Foundation by
visiting their Web site or by writing to:

The Free Software Foundation, Inc.,
59 Temple Place - Suite 330,
Boston, MA 02111-1307,
USA

http://www.fsf.org

Cogl 2.0 Reference Manual iii

COLLABORATORS

TITLE :

Cogl 2.0 Reference Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY August 4, 2015

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Cogl 2.0 Reference Manual iv

Contents

1 Cogl - a modern 3D graphics API 1

1.1 About Cogl . 1

1.2 General API concepts . 1

1.2.1 The Object Interface . 1

1.2.2 Exception handling . 4

1.2.3 Common Types . 7

1.3 Setting Up A Drawing Context . 28

1.3.1 CoglRenderer: Connect to a backend renderer . 28

1.3.2 CoglOnscreenTemplate: Describe a template for onscreen framebuffers 41

1.3.3 CoglDisplay: Setup a display pipeline . 43

1.3.4 The Top-Level Context . 46

1.4 Setting Up A GPU Pipeline . 56

1.4.1 Blend Strings . 56

1.4.2 Some examples . 56

1.4.3 Here’s the syntax . 57

1.4.4 Pipeline . 58

1.4.5 Depth State . 94

1.4.6 Shader snippets . 100

1.5 Allocating GPU Memory . 113

1.5.1 CoglBuffer: The Buffer Interface . 113

1.5.2 CoglAttributeBuffer: Buffers of vertex attributes . 122

1.5.3 CoglIndexBuffer: Buffers of vertex indices . 126

1.6 Describing the layout of GPU Memory . 127

1.6.1 Vertex Attributes . 127

1.6.2 Indices . 131

1.7 Geometry . 133

1.7.1 Primitives . 133

1.7.2 Path Primitives . 148

1.8 Textures . 148

1.8.1 Bitmap . 148

Cogl 2.0 Reference Manual v

1.8.2 The Texture Interface . 155

1.9 Meta Textures . 165

1.9.1 High Level Meta Textures . 165

1.9.2 Sub Textures . 168

1.9.3 Sliced Textures . 169

1.9.4 X11 Texture From Pixmap . 174

1.10 Primitive Textures . 177

1.10.1 Low-level primitive textures . 177

1.10.2 2D textures . 180

1.10.3 3D textures . 184

1.10.4 Rectangle textures (non-normalized coordinates) . 188

1.11 Framebuffers . 190

1.11.1 CoglFramebuffer: The Framebuffer Interface . 190

1.11.2 CoglOnscreen: The Onscreen Framebuffer Interface . 220

1.11.3 Offscreen Framebuffers . 233

1.12 Utilities . 235

1.12.1 Color Type . 235

1.12.2 Matrices . 248

1.12.3 Matrix Stacks . 261

1.12.4 3 Component Vectors . 273

1.12.5 Eulers (Rotations) . 280

1.12.6 Quaternions (Rotations) . 284

1.12.7 GPU synchronisation fences . 296

1.12.8 Versioning utility macros . 299

1.13 Binding and Integrating . 302

1.13.1 SDL Integration . 302

1.13.2 Main loop integration . 305

1.13.3 GType Integration API . 312

1.13.4 GLES 2.0 context . 313

2 Glossaries 320

2.1 Annotation Glossary . 320

A License 322

3 Index 323

Cogl 2.0 Reference Manual 1 / 328

Chapter 1

Cogl - a modern 3D graphics API

1.1 About Cogl

Cogl is a modern 3D graphics API with associated utility APIs designed to expose the features of 3D graphics hardware using
a more object oriented design than OpenGL. The library has primarily been driven by the practical needs of Clutter but it is not
tied to any one toolkit or even constrained to developing UI toolkits.

1.2 General API concepts

1.2.1 The Object Interface

The Object Interface —

Functions

void * cogl_object_ref ()
void cogl_object_unref ()
void * cogl_object_get_user_data ()
void cogl_object_set_user_data ()

Types and Values

CoglObject
CoglUserDataKey

typedef CoglUserDataDestroyCallback

Description

Functions

cogl_object_ref ()

void~*
cogl_object_ref (void *object);

Increases the reference count of object by 1

Cogl 2.0 Reference Manual 2 / 328

Parameters

object a CoglObject

Returns

the object , with its reference count increased

cogl_object_unref ()

void
cogl_object_unref (void *object);

Drecreases the reference count of object by 1; if the reference count reaches 0, the resources allocated by object will be freed

Parameters

object a CoglObject

cogl_object_get_user_data ()

void~*
cogl_object_get_user_data (CoglObject *object,

CoglUserDataKey *key);

Finds the user data previously associated with object using the given key . If no user data has been associated with object

for the given key this function returns NULL.

Parameters

object The object with associated
private data to query

key

The address of a
CoglUserDataKey which
provides a unique value
with which to index the
private data.

Returns

The user data previously associated with object using the given key ; or NULL if no associated data is found.

[transfer none]

Since 1.4

cogl_object_set_user_data ()

void
cogl_object_set_user_data (CoglObject *object,

CoglUserDataKey *key,
void *user_data,
CoglUserDataDestroyCallback destroy);

Cogl 2.0 Reference Manual 3 / 328

Associates some private user_data with a given CoglObject. To later remove the association call cogl_object_set_user_data()
with the same key but NULL for the user_data .

Parameters

object The object to associate
private data with

key

The address of a
CoglUserDataKey which
provides a unique value
with which to index the
private data.

user_data

The data to associate with
the given object, or NULL
to remove a previous
association.

destroy

A CoglUserDataDestroy-
Callback to call if the object
is destroyed or if the
association is removed by
later setting NULL data for
the same key.

Since 1.4

Types and Values

CoglObject

typedef struct _CoglObject CoglObject;

CoglUserDataKey

typedef struct {
int unused;

} CoglUserDataKey;

A CoglUserDataKey is used to declare a key for attaching data to a CoglObject using cogl_object_set_user_data. The typedef
only exists as a formality to make code self documenting since only the unique address of a CoglUserDataKey is used.

Typically you would declare a static CoglUserDataKey and set private data on an object something like this:

static CoglUserDataKey path_private_key;

static void
destroy_path_private_cb (void *data)
{

g_free (data);
}

static void
my_path_set_data (CoglPath *path, void *data)
{

cogl_object_set_user_data (COGL_OBJECT (path),
&private_key,
data,

Cogl 2.0 Reference Manual 4 / 328

destroy_path_private_cb);
}

Members

int unused; ignored.

Since 1.4

CoglUserDataDestroyCallback

typedef GDestroyNotify CoglUserDataDestroyCallback;

When associating private data with a CoglObject a callback can be given which will be called either if the object is destroyed or
if cogl_object_set_user_data() is called with NULL user_data for the same key.

Since 1.4

1.2.2 Exception handling

Exception handling — A way for Cogl to throw exceptions

Functions

CoglBool cogl_error_matches ()
void cogl_error_free ()
CoglError * cogl_error_copy ()
#define COGL_GLIB_ERROR()

Types and Values

CoglError

Description

As a general rule Cogl shields non-recoverable errors from developers, such as most heap allocation failures (unless for excep-
tionally large resources which we might reasonably expect to fail) and this reduces the burden on developers.

There are some Cogl apis though that can fail for exceptional reasons that can also potentially be recovered from at runtime and
for these apis we use a standard convention for reporting runtime recoverable errors.

As an example if we look at the cogl_context_new() api which takes an error argument:

CoglContext *
cogl_context_new (CoglDisplay *display, CoglError **error);

A caller interested in catching any runtime error when creating a new CoglContext would pass the address of a CoglError pointer
that has first been initialized to NULL as follows:

CoglError *error = NULL;
CoglContext *context;

context = cogl_context_new (NULL, &error);

Cogl 2.0 Reference Manual 5 / 328

The return status should usually be enough to determine if there was an error set (in this example we can check if context ==
NULL) but if it’s not possible to tell from the function’s return status you can instead look directly at the error pointer which you
initialized to NULL. In this example we now check the error, report any error to the user, free the error and then simply abort
without attempting to recover.

if (context == NULL)
{

fprintf (stderr, "Failed to create a Cogl context: %s\n",
error->message);

cogl_error_free (error);
abort ();

}

All Cogl APIs that accept an error argument can also be passed a NULL pointer. In this case if an exceptional error condition is
hit then Cogl will simply log the error message and abort the application. This can be compared to language execeptions where
the developer has not attempted to catch the exception. This means the above example is essentially redundant because it’s what
Cogl would have done automatically and so, similarly, if your application has no way to recover from a particular error you might
just as well pass a NULL CoglError pointer to save a bit of typing.

Note If you are used to using the GLib API you will probably recognize that CoglError is just like a GError. In fact if Cogl has
been built with --enable-glib then it is safe to cast a CoglError to a GError.

Note An important detail to be aware of if you are used to using GLib’s GError API is that Cogl deviates from the GLib GError
conventions in one noteable way which is that a NULL error pointer does not mean you want to ignore the details of an error, it
means you are not trying to catch any exceptional errors the function might throw which will result in the program aborting with
a log message if an error is thrown.

Functions

cogl_error_matches ()

CoglBool
cogl_error_matches (CoglError *error,

uint32_t domain,
int code);

Returns TRUE if error matches domain and code , FALSE otherwise. In particular, when error is NULL, FALSE will be
returned.

Parameters

error A CoglError thrown by the
Cogl api or NULL

domain The error domain
code The error code

Returns

whether the error corresponds to the given domain and code .

cogl_error_free ()

Cogl 2.0 Reference Manual 6 / 328

void
cogl_error_free (CoglError *error);

Frees a CoglError and associated resources.

Parameters

error A CoglError thrown by the
Cogl api

cogl_error_copy ()

CoglError~*
cogl_error_copy (CoglError *error);

Makes a copy of error which can later be freed using cogl_error_free().

Parameters

error A CoglError thrown by the
Cogl api

Returns

A newly allocated CoglError initialized to match the contents of error .

COGL_GLIB_ERROR()

#define COGL_GLIB_ERROR(COGL_ERROR) ((CoglError *)COGL_ERROR)

Simply casts a CoglError to a CoglError

If Cogl is built with GLib support then it can safely be assumed that a CoglError is a GError and can be used directly with the
GError api.

Parameters

COGL_ERROR A CoglError thrown by the
Cogl api or NULL

Types and Values

CoglError

typedef struct {
uint32_t domain;
int code;
char *message;

} CoglError;

Members

Cogl 2.0 Reference Manual 7 / 328

uint32_t domain;

A
high-
level
do-
main
iden-
ti-
fier
for
the
er-
ror

int code;

A
spe-
cific
er-
ror
code
within
a
spec-
i-
fied
do-
main

char *message;

A
hu-
man
read-
able
er-
ror
mes-
sage

1.2.3 Common Types

Common Types — Types used throughout the library

Functions

void (*CoglFuncPtr) ()

Types and Values

CoglVertexP2
CoglVertexP3
CoglVertexP2C4
CoglVertexP3C4
CoglVertexP2T2
CoglVertexP3T2
CoglVertexP2T2C4
CoglVertexP3T2C4

enum CoglVerticesMode

Cogl 2.0 Reference Manual 8 / 328

enum CoglPixelFormat
enum CoglBufferTarget
enum CoglBufferBit
enum CoglAttributeType
enum CoglColorMask
typedef CoglBool

Description

General types used by various Cogl functions.

Functions

CoglFuncPtr ()

void
(*CoglFuncPtr) (void);

The type used by cogl for function pointers, note that this type is used as a generic catch-all cast for function pointers and the
actual arguments and return type may be different.

Types and Values

CoglVertexP2

typedef struct {
float x, y;

} CoglVertexP2;

A convenience vertex definition that can be used with cogl_primitive_new_p2().

Members

float x;

The
x
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float y;

The
y
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

Cogl 2.0 Reference Manual 9 / 328

Since 1.6

Stability Level: Unstable

CoglVertexP3

typedef struct {
float x, y, z;

} CoglVertexP3;

A convenience vertex definition that can be used with cogl_primitive_new_p3().

Members

float x;

The
x
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float y;

The
y
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float z;

The
z
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

Since 1.6

Stability Level: Unstable

Cogl 2.0 Reference Manual 10 / 328

CoglVertexP2C4

typedef struct {
float x, y;
uint8_t r, g, b, a;

} CoglVertexP2C4;

A convenience vertex definition that can be used with cogl_primitive_new_p2c4().

Members

float x;

The
x
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float y;

The
y
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

uint8_t r;

The
red
com-
po-
nent
of
a
color
at-
tribute

uint8_t g;

The
blue
com-
po-
nent
of
a
color
at-
tribute

Cogl 2.0 Reference Manual 11 / 328

uint8_t b;

The
green
com-
po-
nent
of
a
color
at-
tribute

uint8_t a;

The
al-
pha
com-
po-
nent
of
a
color
at-
tribute

Since 1.6

Stability Level: Unstable

CoglVertexP3C4

typedef struct {
float x, y, z;
uint8_t r, g, b, a;

} CoglVertexP3C4;

A convenience vertex definition that can be used with cogl_primitive_new_p3c4().

Members

float x;

The
x
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

Cogl 2.0 Reference Manual 12 / 328

float y;

The
y
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float z;

The
z
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

uint8_t r;

The
red
com-
po-
nent
of
a
color
at-
tribute

uint8_t g;

The
blue
com-
po-
nent
of
a
color
at-
tribute

uint8_t b;

The
green
com-
po-
nent
of
a
color
at-
tribute

Cogl 2.0 Reference Manual 13 / 328

uint8_t a;

The
al-
pha
com-
po-
nent
of
a
color
at-
tribute

Since 1.6

Stability Level: Unstable

CoglVertexP2T2

typedef struct {
float x, y;
float s, t;

} CoglVertexP2T2;

A convenience vertex definition that can be used with cogl_primitive_new_p2t2().

Members

float x;

The
x
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float y;

The
y
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

Cogl 2.0 Reference Manual 14 / 328

float s;

The
s
com-
po-
nent
of
a
tex-
ture
co-
or-
di-
nate
at-
tribute

float t;

The
t
com-
po-
nent
of
a
tex-
ture
co-
or-
di-
nate
at-
tribute

Since 1.6

Stability Level: Unstable

CoglVertexP3T2

typedef struct {
float x, y, z;
float s, t;

} CoglVertexP3T2;

A convenience vertex definition that can be used with cogl_primitive_new_p3t2().

Members

Cogl 2.0 Reference Manual 15 / 328

float x;

The
x
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float y;

The
y
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float z;

The
z
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float s;

The
s
com-
po-
nent
of
a
tex-
ture
co-
or-
di-
nate
at-
tribute

Cogl 2.0 Reference Manual 16 / 328

float t;

The
t
com-
po-
nent
of
a
tex-
ture
co-
or-
di-
nate
at-
tribute

Since 1.6

Stability Level: Unstable

CoglVertexP2T2C4

typedef struct {
float x, y;
float s, t;
uint8_t r, g, b, a;

} CoglVertexP2T2C4;

A convenience vertex definition that can be used with cogl_primitive_new_p3t2c4().

Members

float x;

The
x
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float y;

The
y
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

Cogl 2.0 Reference Manual 17 / 328

float s;

The
s
com-
po-
nent
of
a
tex-
ture
co-
or-
di-
nate
at-
tribute

float t;

The
t
com-
po-
nent
of
a
tex-
ture
co-
or-
di-
nate
at-
tribute

uint8_t r;

The
red
com-
po-
nent
of
a
color
at-
tribute

uint8_t g;

The
blue
com-
po-
nent
of
a
color
at-
tribute

Cogl 2.0 Reference Manual 18 / 328

uint8_t b;

The
green
com-
po-
nent
of
a
color
at-
tribute

uint8_t a;

The
al-
pha
com-
po-
nent
of
a
color
at-
tribute

Since 1.6

Stability Level: Unstable

CoglVertexP3T2C4

typedef struct {
float x, y, z;
float s, t;
uint8_t r, g, b, a;

} CoglVertexP3T2C4;

A convenience vertex definition that can be used with cogl_primitive_new_p3t2c4().

Members

float x;

The
x
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

Cogl 2.0 Reference Manual 19 / 328

float y;

The
y
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float z;

The
z
com-
po-
nent
of
a
po-
si-
tion
at-
tribute

float s;

The
s
com-
po-
nent
of
a
tex-
ture
co-
or-
di-
nate
at-
tribute

float t;

The
t
com-
po-
nent
of
a
tex-
ture
co-
or-
di-
nate
at-
tribute

Cogl 2.0 Reference Manual 20 / 328

uint8_t r;

The
red
com-
po-
nent
of
a
color
at-
tribute

uint8_t g;

The
blue
com-
po-
nent
of
a
color
at-
tribute

uint8_t b;

The
green
com-
po-
nent
of
a
color
at-
tribute

uint8_t a;

The
al-
pha
com-
po-
nent
of
a
color
at-
tribute

Since 1.6

Stability Level: Unstable

enum CoglVerticesMode

Different ways of interpreting vertices when drawing.

Members

Cogl 2.0 Reference Manual 21 / 328

COGL_VERTICES_MODE_POINTS

FIXME,
equiv-
a-
lent
to
GL_
P
O
I
NTS

COGL_VERTICES_MODE_LINES

FIXME,
equiv-
a-
lent
to
GL_
L
I
NES

COGL_VERTICES_MODE_LINE_LOOP

FIXME,
equiv-
a-
lent
to
GL_
L
I
N
E
_
L
OOP

COGL_VERTICES_MODE_LINE_STRIP

FIXME,
equiv-
a-
lent
to
GL_
L
I
N
E
_
S
T
RIP

Cogl 2.0 Reference Manual 22 / 328

COGL_VERTICES_MODE_TRIANGLES

FIXME,
equiv-
a-
lent
to
GL_
T
R
I
A
N
G
LES

COGL_VERTICES_MODE_TRIANGLE_STRIP

FIXME,
equiv-
a-
lent
to
GL_
T
R
I
A
N
G
L
E
_
S
T
RIP

COGL_VERTICES_MODE_TRIANGLE_FAN

FIXME,
equiv-
a-
lent
to
GL_
T
R
I
A
N
G
L
E
_
FAN

Since 1.0

enum CoglPixelFormat

Pixel formats used by Cogl. For the formats with a byte per component, the order of the components specify the order in
increasing memory addresses. So for example COGL_PIXEL_FORMAT_RGB_888 would have the red component in the lowest
address, green in the next address and blue after that regardless of the endianness of the system.

Cogl 2.0 Reference Manual 23 / 328

For the formats with non byte aligned components the component order specifies the order within a 16-bit or 32-bit number from
most significant bit to least significant. So for COGL_PIXEL_FORMAT_RGB_565, the red component would be in bits 11-15,
the green component would be in 6-11 and the blue component would be in 1-5. Therefore the order in memory depends on the
endianness of the system.

Members

COGL_PIXEL_FORMAT_ANY
Any
for-
mat

COGL_PIXEL_FORMAT_A_8

8
bits
al-
pha
mask

COGL_PIXEL_FORMAT_RG_88

RG,
16
bits.
Note
that
red-
green
tex-
tures
are
only
avail-
able
if
COGL_FEATURE_ID_TEXTURE_RG
is
ad-
ver-
tised.
See
cogl_texture_set_components()
for
de-
tails.

COGL_PIXEL_FORMAT_RGB_565
RGB,
16
bits

COGL_PIXEL_FORMAT_RGBA_4444
RGBA,
16
bits

COGL_PIXEL_FORMAT_RGBA_4444_PRE

Premultiplied
RGBA,
16
bits

COGL_PIXEL_FORMAT_RGBA_5551
RGBA,
16
bits

COGL_PIXEL_FORMAT_RGBA_5551_PRE

Premultiplied
RGBA,
16
bits

Cogl 2.0 Reference Manual 24 / 328

COGL_PIXEL_FORMAT_RGB_888
RGB,
24
bits

COGL_PIXEL_FORMAT_BGR_888
BGR,
24
bits

COGL_PIXEL_FORMAT_RGBA_8888
RGBA,
32
bits

COGL_PIXEL_FORMAT_BGRA_8888
BGRA,
32
bits

COGL_PIXEL_FORMAT_ARGB_8888
ARGB,
32
bits

COGL_PIXEL_FORMAT_ABGR_8888
ABGR,
32
bits

COGL_PIXEL_FORMAT_RGBA_8888_PRE

Premultiplied
RGBA,
32
bits

COGL_PIXEL_FORMAT_BGRA_8888_PRE

Premultiplied
BGRA,
32
bits

COGL_PIXEL_FORMAT_ARGB_8888_PRE

Premultiplied
ARGB,
32
bits

COGL_PIXEL_FORMAT_ABGR_8888_PRE

Premultiplied
ABGR,
32
bits

COGL_PIXEL_FORMAT_RGBA_1010102

RGBA,
32
bits,
10
bpc

COGL_PIXEL_FORMAT_BGRA_1010102

BGRA,
32
bits,
10
bpc

COGL_PIXEL_FORMAT_ARGB_2101010

ARGB,
32
bits,
10
bpc

COGL_PIXEL_FORMAT_ABGR_2101010

ABGR,
32
bits,
10
bpc

Cogl 2.0 Reference Manual 25 / 328

COGL_PIXEL_FORMAT_RGBA_1010102_PRE

Premultiplied
RGBA,
32
bits,
10
bpc

COGL_PIXEL_FORMAT_BGRA_1010102_PRE

Premultiplied
BGRA,
32
bits,
10
bpc

COGL_PIXEL_FORMAT_ARGB_2101010_PRE

Premultiplied
ARGB,
32
bits,
10
bpc

COGL_PIXEL_FORMAT_ABGR_2101010_PRE

Premultiplied
ABGR,
32
bits,
10
bpc

COGL_PIXEL_FORMAT_DEPTH_16
Depth,
16
bits

COGL_PIXEL_FORMAT_DEPTH_32
Depth,
32
bits

COGL_PIXEL_FORMAT_DEPTH_24_STENCIL_8
Depth/Stencil,
24/8
bits

Since 0.8

enum CoglBufferTarget

Target flags for FBOs.

Members

COGL_WINDOW_BUFFER FIXME
COGL_OFFSCREEN_BUFFER FIXME

Since 0.8

enum CoglBufferBit

Types of auxiliary buffers

Members

Cogl 2.0 Reference Manual 26 / 328

COGL_BUFFER_BIT_COLOR

Selects
the
pri-
mary
color
buffer

COGL_BUFFER_BIT_DEPTH

Selects
the
depth
buffer

COGL_BUFFER_BIT_STENCIL

Selects
the
sten-
cil
buffer

Since 1.0

enum CoglAttributeType

Data types for the components of a vertex attribute.

Members

COGL_ATTRIBUTE_TYPE_BYTE

Data
is
the
same
size
of
a
byte

COGL_ATTRIBUTE_TYPE_UNSIGNED_BYTE

Data
is
the
same
size
of
an
un-
signed
byte

COGL_ATTRIBUTE_TYPE_SHORT

Data
is
the
same
size
of
a
short
in-
te-
ger

Cogl 2.0 Reference Manual 27 / 328

COGL_ATTRIBUTE_TYPE_UNSIGNED_SHORT

Data
is
the
same
size
of
an
un-
signed
short
in-
te-
ger

COGL_ATTRIBUTE_TYPE_FLOAT

Data
is
the
same
size
of
a
float

Since 1.0

enum CoglColorMask

Defines a bit mask of color channels. This can be used with cogl_pipeline_set_color_mask() for example to define which color
channels should be written to the current framebuffer when drawing something.

Members

COGL_COLOR_MASK_NONE

None
of
the
color
chan-
nels
are
masked

COGL_COLOR_MASK_RED

Masks
the
red
color
chan-
nel

COGL_COLOR_MASK_GREEN

Masks
the
green
color
chan-
nel

Cogl 2.0 Reference Manual 28 / 328

COGL_COLOR_MASK_BLUE

Masks
the
blue
color
chan-
nel

COGL_COLOR_MASK_ALPHA

Masks
the
al-
pha
color
chan-
nel

COGL_COLOR_MASK_ALL

All
of
the
color
chan-
nels
are
masked

CoglBool

typedef int CoglBool;

A boolean data type used throughout the Cogl C api. This should be used in conjunction with the TRUE and FALSE macro
defines for setting and testing boolean values.

Since 2.0

Stability Level: Stable

1.3 Setting Up A Drawing Context

1.3.1 CoglRenderer: Connect to a backend renderer

CoglRenderer: Connect to a backend renderer — Choosing a means to render

Functions

CoglBool cogl_is_renderer ()
CoglRenderer * cogl_renderer_new ()
int cogl_renderer_get_n_fragment_texture_units ()
CoglBool cogl_renderer_connect ()
void cogl_renderer_set_winsys_id ()
CoglWinsysID cogl_renderer_get_winsys_id ()
void cogl_renderer_add_constraint ()
void cogl_renderer_remove_constraint ()
void cogl_xlib_renderer_set_foreign_display ()
Display * cogl_xlib_renderer_get_foreign_display ()
CoglFilterReturn (*CoglXlibFilterFunc) ()
void cogl_xlib_renderer_add_filter ()
void cogl_xlib_renderer_remove_filter ()

Cogl 2.0 Reference Manual 29 / 328

CoglFilterReturn cogl_xlib_renderer_handle_event ()
CoglFilterReturn (*CoglWin32FilterFunc) ()
void cogl_win32_renderer_add_filter ()
void cogl_win32_renderer_remove_filter ()
CoglFilterReturn cogl_win32_renderer_handle_event ()
void cogl_win32_renderer_set_event_retrieval_enabled ()
void cogl_wayland_renderer_set_foreign_display ()
void cogl_wayland_renderer_set_event_dispatch_enabled ()
struct wl_display * cogl_wayland_renderer_get_display ()

Types and Values

CoglRenderer
enum CoglWinsysID
enum CoglRendererConstraint
enum CoglFilterReturn

Description

A CoglRenderer represents a means to render. It encapsulates the selection of an underlying driver, such as OpenGL or OpenGL-
ES and a selection of a window system binding API such as GLX, or EGL or WGL.

A CoglRenderer has two states, "unconnected" and "connected". When a renderer is first instantiated using cogl_renderer_new()
it is unconnected so that it can be configured and constraints can be specified for how the backend driver and window system
should be chosen.

After configuration a CoglRenderer can (optionally) be explicitly connected using cogl_renderer_connect() which allows for
the handling of connection errors so that fallback configurations can be tried if necessary. Applications that don’t support any
fallbacks though can skip using cogl_renderer_connect() and leave Cogl to automatically connect the renderer.

Once you have a configured CoglRenderer it can be used to create a CoglDisplay object using cogl_display_new().

Note Many applications don’t need to explicitly use cogl_renderer_new() or cogl_display_new() and can just jump straight to
cogl_context_new() and pass a NULL display argument so Cogl will automatically connect and setup a renderer and display.

Functions

cogl_is_renderer ()

CoglBool
cogl_is_renderer (void *object);

Determines if the given object is a CoglRenderer

Parameters

object A CoglObject pointer

Returns

TRUE if object is a CoglRenderer, else FALSE.

Since 1.10

Stability Level: Unstable

Cogl 2.0 Reference Manual 30 / 328

cogl_renderer_new ()

CoglRenderer~*
cogl_renderer_new (void);

Instantiates a new (unconnected) CoglRenderer object. A CoglRenderer represents a means to render. It encapsulates the selec-
tion of an underlying driver, such as OpenGL or OpenGL-ES and a selection of a window system binding API such as GLX, or
EGL or WGL.

While the renderer is unconnected it can be configured so that applications may specify backend constraints, such as "must use
x11" for example via cogl_renderer_add_constraint().

There are also some platform specific configuration apis such as cogl_xlib_renderer_set_foreign_display() that may also be used
while the renderer is unconnected.

Once the renderer has been configured, then it may (optionally) be explicitly connected using cogl_renderer_connect() which
allows errors to be handled gracefully and potentially fallback configurations can be tried out if there are initial failures.

If a renderer is not explicitly connected then cogl_display_new() will automatically connect the renderer for you. If you don’t
have any code to deal with error/fallback situations then its fine to just let Cogl do the connection for you.

Once you have setup your renderer then the next step is to create a CoglDisplay using cogl_display_new().

Note Many applications don’t need to explicitly use cogl_renderer_new() or cogl_display_new() and can just jump straight to
cogl_context_new() and pass a NULL display argument so Cogl will automatically connect and setup a renderer and display.

Returns

A newly created CoglRenderer.

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_renderer_get_n_fragment_texture_units ()

int
cogl_renderer_get_n_fragment_texture_units

(CoglRenderer *renderer);

Queries how many texture units can be used from fragment programs

Parameters

renderer A CoglRenderer

Returns

the number of texture image units.

Since 1.8

Stability Level: Unstable

cogl_renderer_connect ()

Cogl 2.0 Reference Manual 31 / 328

CoglBool
cogl_renderer_connect (CoglRenderer *renderer,

CoglError **error);

Connects the configured renderer . Renderer connection isn’t a very active process, it basically just means validating that any
given constraint criteria can be satisfied and that a usable driver and window system backend can be found.

Parameters

renderer An unconnected
CoglRenderer

error a pointer to a CoglError for
reporting exceptions

Returns

TRUE if there was no error while connecting the given renderer . FALSE if there was an error.

Since 1.10

Stability Level: Unstable

cogl_renderer_set_winsys_id ()

void
cogl_renderer_set_winsys_id (CoglRenderer *renderer,

CoglWinsysID winsys_id);

This allows you to explicitly select a winsys backend to use instead of letting Cogl automatically select a backend.

if you select an unsupported backend then cogl_renderer_connect() will fail and report an error.

This may only be called on an un-connected CoglRenderer.

Parameters

renderer A CoglRenderer

winsys_id An ID of the winsys you
explicitly want to use.

cogl_renderer_get_winsys_id ()

CoglWinsysID
cogl_renderer_get_winsys_id (CoglRenderer *renderer);

Queries which window system backend Cogl has chosen to use.

This may only be called on a connected CoglRenderer.

Parameters

renderer A CoglRenderer

Cogl 2.0 Reference Manual 32 / 328

Returns

The CoglWinsysID corresponding to the chosen window system backend.

cogl_renderer_add_constraint ()

void
cogl_renderer_add_constraint (CoglRenderer *renderer,

CoglRendererConstraint constraint);

This adds a renderer selection constraint .

Applications should ideally minimize how many of these constraints they depend on to ensure maximum portability.

Parameters

renderer An unconnected
CoglRenderer

constraint A CoglRendererConstraint
to add

Since 1.10

Stability Level: Unstable

cogl_renderer_remove_constraint ()

void
cogl_renderer_remove_constraint (CoglRenderer *renderer,

CoglRendererConstraint constraint);

This removes a renderer selection constraint .

Applications should ideally minimize how many of these constraints they depend on to ensure maximum portability.

Parameters

renderer An unconnected
CoglRenderer

constraint A CoglRendererConstraint
to remove

Since 1.10

Stability Level: Unstable

cogl_xlib_renderer_set_foreign_display ()

void
cogl_xlib_renderer_set_foreign_display

(CoglRenderer *renderer,
Display *display);

Cogl 2.0 Reference Manual 33 / 328

cogl_xlib_renderer_get_foreign_display ()

Display~*
cogl_xlib_renderer_get_foreign_display

(CoglRenderer *renderer);

CoglXlibFilterFunc ()

CoglFilterReturn
(*CoglXlibFilterFunc) (XEvent *event,

void *data);

cogl_xlib_renderer_add_filter ()

void
cogl_xlib_renderer_add_filter (CoglRenderer *renderer,

CoglXlibFilterFunc func,
void *data);

cogl_xlib_renderer_remove_filter ()

void
cogl_xlib_renderer_remove_filter (CoglRenderer *renderer,

CoglXlibFilterFunc func,
void *data);

cogl_xlib_renderer_handle_event ()

CoglFilterReturn
cogl_xlib_renderer_handle_event (CoglRenderer *renderer,

XEvent *event);

CoglWin32FilterFunc ()

CoglFilterReturn
(*CoglWin32FilterFunc) (MSG *message,

void *data);

A callback function that can be registered with cogl_win32_renderer_add_filter(). The function should return COGL_FILTER_REMOVE
if it wants to prevent further processing or COGL_FILTER_CONTINUE otherwise.

Parameters

message A pointer to a win32 MSG
struct

data The data that was given
when the filter was added

cogl_win32_renderer_add_filter ()

Cogl 2.0 Reference Manual 34 / 328

void
cogl_win32_renderer_add_filter (CoglRenderer *renderer,

CoglWin32FilterFunc func,
void *data);

Adds a callback function that will receive all native events. The function can stop further processing of the event by return
COGL_FILTER_REMOVE.

Parameters

renderer a CoglRenderer
func the callback function

data user data passed to func

when called

cogl_win32_renderer_remove_filter ()

void
cogl_win32_renderer_remove_filter (CoglRenderer *renderer,

CoglWin32FilterFunc func,
void *data);

Removes a callback that was previously added with cogl_win32_renderer_add_filter().

Parameters

renderer a CoglRenderer
func the callback function

data user data given when the
callback was installed

cogl_win32_renderer_handle_event ()

CoglFilterReturn
cogl_win32_renderer_handle_event (CoglRenderer *renderer,

MSG *message);

This function processes a single event; it can be used to hook into external event retrieval (for example that done by Clutter or
GDK).

Parameters

renderer a CoglRenderer

message A pointer to a win32 MSG
struct

Returns

CoglFilterReturn. COGL_FILTER_REMOVE indicates that Cogl has internally handled the event and the caller should do no
further processing. COGL_FILTER_CONTINUE indicates that Cogl is either not interested in the event, or has used the event
to update internal state without taking any exclusive action.

Cogl 2.0 Reference Manual 35 / 328

cogl_win32_renderer_set_event_retrieval_enabled ()

void
cogl_win32_renderer_set_event_retrieval_enabled

(CoglRenderer *renderer,
CoglBool enable);

Sets whether Cogl should automatically retrieve messages from Windows. It defaults to TRUE. It can be set to FALSE if the
application wants to handle its own message retrieval. Note that Cogl still needs to see all of the messages to function properly
so the application should call cogl_win32_renderer_handle_event() for each message if it disables automatic event retrieval.

Parameters

renderer a CoglRenderer
enable The new value

Since 1.16

Stability Level: Unstable

cogl_wayland_renderer_set_foreign_display ()

void
cogl_wayland_renderer_set_foreign_display

(CoglRenderer *renderer,
struct wl_display *display);

Allows you to explicitly control what Wayland display you want Cogl to work with instead of leaving Cogl to automatically
connect to a wayland compositor.

Parameters

renderer A CoglRenderer
display A Wayland display

Since 1.8

Stability Level: Unstable

cogl_wayland_renderer_set_event_dispatch_enabled ()

void
cogl_wayland_renderer_set_event_dispatch_enabled

(CoglRenderer *renderer,
CoglBool enable);

Sets whether Cogl should handle calling wl_display_dispatch() and wl_display_flush() as part of its main loop integration via
cogl_poll_renderer_get_info() and cogl_poll_renderer_dispatch(). The default value is TRUE. When it is enabled the application
can register listeners for Wayland interfaces and the callbacks will be invoked during cogl_poll_renderer_dispatch(). If the
application wants to integrate with its own code that is already handling reading from the Wayland display socket, it should
disable this to avoid having competing code read from the socket.

Parameters

Cogl 2.0 Reference Manual 36 / 328

renderer A CoglRenderer
enable The new value

Since 1.16

Stability Level: Unstable

cogl_wayland_renderer_get_display ()

struct wl_display~*
cogl_wayland_renderer_get_display (CoglRenderer *renderer);

Retrieves the Wayland display that Cogl is using. If a foreign display has been specified using cogl_wayland_renderer_set_foreign_display()
then that display will be returned. If no foreign display has been specified then the display that Cogl creates internally will be
returned unless the renderer has not yet been connected (either implicitly or explicitly by calling cogl_renderer_connect()) in
which case NULL is returned.

Parameters

renderer A CoglRenderer

Returns

The wayland display currently associated with renderer , or NULL if the renderer hasn’t yet been connected and no foreign
display has been specified.

Since 1.8

Stability Level: Unstable

Types and Values

CoglRenderer

typedef struct _CoglRenderer CoglRenderer;

enum CoglWinsysID

Identifies specific window system backends that Cogl supports.

These can be used to query what backend Cogl is using or to try and explicitly select a backend to use.

Members

Cogl 2.0 Reference Manual 37 / 328

COGL_WINSYS_ID_ANY

Implies
no
pref-
er-
ence
for
which
back-
end
is
used

COGL_WINSYS_ID_STUB

Use
the
no-
op
stub
back-
end

COGL_WINSYS_ID_GLX

Use
the
GLX
win-
dow
sys-
tem
bind-
ing
API

COGL_WINSYS_ID_EGL_XLIB

Use
EGL
with
the
X
win-
dow
sys-
tem
via
XLib

COGL_WINSYS_ID_EGL_NULL

Use
EGL
with
the
Pow-
erVR
NULL
win-
dow
sys-
tem

COGL_WINSYS_ID_EGL_GDL

Use
EGL
with
the
GDL
plat-
form

Cogl 2.0 Reference Manual 38 / 328

COGL_WINSYS_ID_EGL_WAYLAND

Use
EGL
with
the
Way-
land
win-
dow
sys-
tem

COGL_WINSYS_ID_EGL_KMS

Use
EGL
with
the
KMS
plat-
form

COGL_WINSYS_ID_EGL_ANDROID

Use
EGL
with
the
An-
droid
plat-
form

COGL_WINSYS_ID_WGL

Use
the
Mi-
crosoft
Win-
dows
WGL
bind-
ing
API

COGL_WINSYS_ID_SDL

Use
the
SDL
win-
dow
sys-
tem

enum CoglRendererConstraint

These constraint flags are hard-coded features of the different renderer backends. Sometimes a platform may support multiple
rendering options which Cogl will usually choose from automatically. Some of these features are important to higher level
applications and frameworks though, such as whether a renderer is X11 based because an application might only support X11
based input handling. An application might also need to ensure EGL is used internally too if they depend on access to an
EGLDisplay for some purpose.

Applications should ideally minimize how many of these constraints they depend on to ensure maximum portability.

Members

Cogl 2.0 Reference Manual 39 / 328

COGL_RENDERER_CONSTRAINT_USES_X11

Require
the
ren-
derer
to
be
X11
based

COGL_RENDERER_CONSTRAINT_USES_XLIB

Require
the
ren-
derer
to
be
X11
based
and
use
Xlib

COGL_RENDERER_CONSTRAINT_USES_EGL

Require
the
ren-
derer
to
be
EGL
based

Cogl 2.0 Reference Manual 40 / 328

COGL_RENDERER_CONSTRAINT_SUPPORTS_COGL_GLES2

Require
that
the
ren-
derer
sup-
ports
cre-
at-
ing
a
CoglGLES2Context
via
cogl_gles2_context_new().
This
can
be
used
to
in-
te-
grate
GLES
2.0
code
into
Cogl
based
ap-
pli-
ca-
tions.

Since 1.10

Stability Level: Unstable

enum CoglFilterReturn

Return values for the CoglXlibFilterFunc and CoglWin32FilterFunc functions.

Members

COGL_FILTER_CONTINUE

The
event
was
not
han-
dled,
con-
tin-
ues
the
pro-
cess-
ing

Cogl 2.0 Reference Manual 41 / 328

COGL_FILTER_REMOVE

Remove
the
event,
stops
the
pro-
cess-
ing

Stability Level: Unstable

1.3.2 CoglOnscreenTemplate: Describe a template for onscreen framebuffers

CoglOnscreenTemplate: Describe a template for onscreen framebuffers —

Functions

CoglBool cogl_is_onscreen_template ()
CoglOnscreenTemplate * cogl_onscreen_template_new ()
void cogl_onscreen_template_set_has_alpha ()
void cogl_onscreen_template_set_swap_throttled ()
void cogl_onscreen_template_set_samples_per_pixel ()

Types and Values

CoglOnscreenTemplate

Description

Functions

cogl_is_onscreen_template ()

CoglBool
cogl_is_onscreen_template (void *object);

Gets whether the given object references a CoglOnscreenTemplate.

Parameters

object A CoglObject pointer

Returns

TRUE if the object references a CoglOnscreenTemplate and FALSE otherwise.

Since 1.10

Stability Level: Unstable

cogl_onscreen_template_new ()

Cogl 2.0 Reference Manual 42 / 328

CoglOnscreenTemplate~*
cogl_onscreen_template_new (void);

cogl_onscreen_template_set_has_alpha ()

void
cogl_onscreen_template_set_has_alpha (CoglOnscreenTemplate *onscreen_template,

CoglBool has_alpha);

Requests that any future CoglOnscreen framebuffers derived from this template should have an alpha channel if has_alpha is
TRUE. If has_alpha is FALSE then future framebuffers derived from this template aren’t required to have an alpha channel,
although Cogl may choose to ignore this and allocate a redundant alpha channel.

By default a template does not request an alpha component.

Parameters

onscreen_template A CoglOnscreenTemplate
template framebuffer

has_alpha Whether an alpha channel
is required

Since 1.16

Stability Level: Unstable

cogl_onscreen_template_set_swap_throttled ()

void
cogl_onscreen_template_set_swap_throttled

(CoglOnscreenTemplate *onscreen_template,
CoglBool throttled);

Requests that any future CoglOnscreen framebuffers derived from this template should enable or disable swap throttling accord-
ing to the given throttled argument.

Parameters

onscreen_template A CoglOnscreenTemplate
template framebuffer

throttled Whether throttling should
be enabled

Since 1.10

Stability Level: Unstable

cogl_onscreen_template_set_samples_per_pixel ()

void
cogl_onscreen_template_set_samples_per_pixel

(CoglOnscreenTemplate *onscreen_template,
int n);

Cogl 2.0 Reference Manual 43 / 328

Requires that any future CoglOnscreen framebuffers derived from this template must support making at least n samples per pixel
which will all contribute to the final resolved color for that pixel.

By default this value is usually set to 0 and that is referred to as "single-sample" rendering. A value of 1 or greater is referred to
as "multisample" rendering.

Note There are some semantic differences between single-sample rendering and multisampling with just 1 point sample such
as it being redundant to use the cogl_framebuffer_resolve_samples() and cogl_framebuffer_resolve_samples_region() apis
with single-sample rendering.

Parameters

onscreen_template A CoglOnscreenTemplate
template framebuffer

n The minimum number of
samples per pixel

Since 1.10

Stability Level: Unstable

Types and Values

CoglOnscreenTemplate

typedef struct _CoglOnscreenTemplate CoglOnscreenTemplate;

1.3.3 CoglDisplay: Setup a display pipeline

CoglDisplay: Setup a display pipeline — Common aspects of a display pipeline

Functions

CoglBool cogl_is_display ()
CoglDisplay * cogl_display_new ()
CoglRenderer * cogl_display_get_renderer ()
CoglBool cogl_display_setup ()
void cogl_gdl_display_set_plane ()
void cogl_wayland_display_set_compositor_display ()

Types and Values

CoglDisplay

Description

The basic intention for this object is to let the application configure common display preferences before creating a context, and
there are a few different aspects to this...

Firstly there are options directly relating to the physical display pipeline that is currently being used including the digital to
analogue conversion hardware and the screens the user sees.

Cogl 2.0 Reference Manual 44 / 328

Another aspect is that display options may constrain or affect how onscreen framebuffers should later be configured. The original
rationale for the display object in fact was to let us handle GLX and EGLs requirements that framebuffers must be "compatible"
with the config associated with the current context meaning we have to force the user to describe how they would like to create
their onscreen windows before we can choose a suitable fbconfig and create a GLContext.

Functions

cogl_is_display ()

CoglBool
cogl_is_display (void *object);

Gets whether the given object references a CoglDisplay.

Parameters

object A CoglObject pointer

Returns

TRUE if the object references a CoglDisplay and FALSE otherwise.

Since 1.10

Stability Level: Unstable

cogl_display_new ()

CoglDisplay~*
cogl_display_new (CoglRenderer *renderer,

CoglOnscreenTemplate *onscreen_template);

Explicitly allocates a new CoglDisplay object to encapsulate the common state of the display pipeline that applies to the whole
application.

Note Many applications don’t need to explicitly use cogl_display_new() and can just jump straight to cogl_context_new() and
pass a NULL display argument so Cogl will automatically connect and setup a renderer and display.

A display can only be made for a specific choice of renderer which is why this takes the renderer argument.

A common use for explicitly allocating a display object is to define a template for allocating onscreen framebuffers which is what
the onscreen_template argument is for, or alternatively you can use cogl_display_set_onscreen_template().

When a display is first allocated via cogl_display_new() it is in a mutable configuration mode. It’s designed this way so we can
extend the apis available for configuring a display without requiring huge numbers of constructor arguments.

When you have finished configuring a display object you can optionally call cogl_display_setup() to explicitly apply the config-
uration and check for errors. Alternaitvely you can pass the display to cogl_context_new() and Cogl will implicitly apply your
configuration but if there are errors then the application will abort with a message. For simple applications with no fallback
options then relying on the implicit setup can be fine.

Parameters

renderer A CoglRenderer
onscreen_template A CoglOnscreenTemplate

Cogl 2.0 Reference Manual 45 / 328

Returns

A newly allocated CoglDisplay object in a mutable configuration mode.

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_display_get_renderer ()

CoglRenderer~*
cogl_display_get_renderer (CoglDisplay *display);

Queries the CoglRenderer associated with the given display .

Parameters

display a CoglDisplay

Returns

The associated CoglRenderer.

[transfer none]

Since 1.10

Stability Level: Unstable

cogl_display_setup ()

CoglBool
cogl_display_setup (CoglDisplay *display,

CoglError **error);

Explicitly sets up the given display object. Use of this api is optional since Cogl will internally setup the display if not done
explicitly.

When a display is first allocated via cogl_display_new() it is in a mutable configuration mode. This allows us to extend the apis
available for configuring a display without requiring huge numbers of constructor arguments.

Its possible to request a configuration that might not be supportable on the current system and so this api provides a means to
apply the configuration explicitly but if it fails then an exception will be returned so you can handle the error gracefully and
perhaps fall back to an alternative configuration.

If you instead rely on Cogl implicitly calling cogl_display_setup() for you then if there is an error with the configuration you
won’t get an opportunity to handle that and the application may abort with a message. For simple applications that don’t have
any fallback options this behaviour may be fine.

Parameters

display a CoglDisplay

error return location for a
CoglError

Cogl 2.0 Reference Manual 46 / 328

Returns

Returns TRUE if there was no error, else it returns FALSE and returns an exception via error .

Since 1.10

Stability Level: Unstable

cogl_gdl_display_set_plane ()

void
cogl_gdl_display_set_plane (CoglDisplay *display,

gdl_plane_id_t plane);

Request that Cogl output to a specific GDL overlay plane .

Parameters

display a CoglDisplay
plane the GDL plane id

Since 1.10

Stability Level: Unstable

cogl_wayland_display_set_compositor_display ()

void
cogl_wayland_display_set_compositor_display

(CoglDisplay *display,
struct wl_display *wayland_display);

Informs Cogl of a compositor’s Wayland display pointer. This enables Cogl to register private wayland extensions required to
pass buffers between the clients and compositor.

Parameters

display a CoglDisplay

wayland_display A compositor’s Wayland
display pointer

Since 1.10

Stability Level: Unstable

Types and Values

CoglDisplay

typedef struct _CoglDisplay CoglDisplay;

1.3.4 The Top-Level Context

The Top-Level Context — The top level application context.

Cogl 2.0 Reference Manual 47 / 328

Functions

CoglBool cogl_is_context ()
CoglContext * cogl_context_new ()
CoglDisplay * cogl_context_get_display ()
CoglBool cogl_has_feature ()
CoglBool cogl_has_features ()
void (*CoglFeatureCallback) ()
void cogl_foreach_feature ()

Types and Values

CoglContext
enum CoglFeatureID
enum CoglReadPixelsFlags

Description

A CoglContext is the top most sandbox of Cogl state for an application or toolkit. Its main purpose is to act as a sandbox for the
memory management of state objects. Normally an application will only create a single context since there is no way to share
resources between contexts.

For those familiar with OpenGL or perhaps Cairo it should be understood that unlike these APIs a Cogl context isn’t a rendering
context as such. In other words Cogl doesn’t aim to provide a state machine style model for configuring rendering parameters.
Most rendering state in Cogl is directly associated with user managed objects called pipelines and geometry is drawn with a
specific pipeline object to a framebuffer object and those 3 things fully define the state for drawing. This is an important part
of Cogl’s design since it helps you write orthogonal rendering components that can all access the same GPU without having to
worry about what state other components have left you with.

Note
Cogl does not maintain internal references to the context for resources that depend on the context so applications. This is
to help applications control the lifetime a context without us needing to introduce special api to handle the breakup of internal
circular references due to internal resources and caches associated with the context. One a context has been destroyed then all
directly or indirectly dependant resources will be in an inconsistent state and should not be manipulated or queried in any way.
For applications that rely on the operating system to clean up resources this policy shouldn’t affect them, but for applications
that need to carefully destroy and re-create Cogl contexts multiple times throughout their lifetime (such as Android applications)
they should be careful to destroy all context dependant resources, such as framebuffers or textures etc before unrefing and
destroying the context.

Functions

cogl_is_context ()

CoglBool
cogl_is_context (void *object);

Gets whether the given object references an existing context object.

Parameters

object An object or NULL

Cogl 2.0 Reference Manual 48 / 328

Returns

TRUE if the object references a CoglContext, FALSE otherwise

Since 1.10

Stability Level: Unstable

cogl_context_new ()

CoglContext~*
cogl_context_new (CoglDisplay *display,

CoglError **error);

Creates a new CoglContext which acts as an application sandbox for any state objects that are allocated.

Parameters

display A CoglDisplay pointer. [allow-none]

error A CoglError return
location.

Returns

A newly allocated CoglContext.

[transfer full]

Since 1.8

Stability Level: Unstable

cogl_context_get_display ()

CoglDisplay~*
cogl_context_get_display (CoglContext *context);

Retrieves the CoglDisplay that is internally associated with the given context . This will return the same CoglDisplay that was
passed to cogl_context_new() or if NULL was passed to cogl_context_new() then this function returns a pointer to the display
that was automatically setup internally.

Parameters

context A CoglContext pointer

Returns

The CoglDisplay associated with the given context .

[transfer none]

Since 1.8

Stability Level: Unstable

cogl_has_feature ()

Cogl 2.0 Reference Manual 49 / 328

CoglBool
cogl_has_feature (CoglContext *context,

CoglFeatureID feature);

Checks if a given feature is currently available

Cogl does not aim to be a lowest common denominator API, it aims to expose all the interesting features of GPUs to application
which means applications have some responsibility to explicitly check that certain features are available before depending on
them.

Parameters

context A CoglContext pointer
feature A CoglFeatureID

Returns

TRUE if the feature is currently supported or FALSE if not.

Since 1.10

Stability Level: Unstable

cogl_has_features ()

CoglBool
cogl_has_features (CoglContext *context,

...);

Checks if a list of features are all currently available.

This checks all of the listed features using cogl_has_feature() and returns TRUE if all the features are available or FALSE
otherwise.

Parameters

context A CoglContext pointer

... A 0 terminated list of
CoglFeatureIDs

Returns

TRUE if all the features are available, FALSE otherwise.

Since 1.10

Stability Level: Unstable

CoglFeatureCallback ()

void
(*CoglFeatureCallback) (CoglFeatureID feature,

void *user_data);

A callback used with cogl_foreach_feature() for enumerating all context level features supported by Cogl.

Cogl 2.0 Reference Manual 50 / 328

Parameters

feature A single feature currently
supported by Cogl

user_data A private pointer passed to
cogl_foreach_feature().

Since 0.10

Stability Level: Unstable

cogl_foreach_feature ()

void
cogl_foreach_feature (CoglContext *context,

CoglFeatureCallback callback,
void *user_data);

Iterates through all the context level features currently supported for a given context and for each feature callback is called.

Parameters

context A CoglContext pointer

callback
A CoglFeatureCallback
called for each supported
feature.

[scope call]

user_data Private data to pass to the
callback. [closure]

Since 1.10

Stability Level: Unstable

Types and Values

CoglContext

typedef struct _CoglContext CoglContext;

enum CoglFeatureID

All the capabilities that can vary between different GPUs supported by Cogl. Applications that depend on any of these features
should explicitly check for them using cogl_has_feature() or cogl_has_features().

Members

Cogl 2.0 Reference Manual 51 / 328

COGL_FEATURE_ID_TEXTURE_NPOT_BASIC

The
hard-
ware
sup-
ports
non
power
of
two
tex-
tures,
but
you
also
need
to
check
the
COGL_FEATURE_ID_TEXTURE_NPOT_MIPMAP
and
COGL_FEATURE_ID_TEXTURE_NPOT_REPEAT
fea-
tures
to
know
if
the
hard-
ware
sup-
ports
npot
tex-
ture
mipmaps
or
re-
peat
modes
other
than
COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE
re-
spec-
tively.

Cogl 2.0 Reference Manual 52 / 328

COGL_FEATURE_ID_TEXTURE_NPOT_MIPMAP

Mipmapping
is
sup-
ported
in
con-
jun-
tion
with
non
power
of
two
tex-
tures.

COGL_FEATURE_ID_TEXTURE_NPOT_REPEAT

Repeat
modes
other
than
COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE
are
sup-
ported
by
the
hard-
ware.

COGL_FEATURE_ID_TEXTURE_NPOT

Non
power
of
two
tex-
tures
are
sup-
ported
by
the
hard-
ware.
This
is
a
equiv-
a-
lent
to
the
COGL_FEATURE_ID_TEXTURE_NPOT_BASIC,
COGL_FEATURE_ID_TEXTURE_NPOT_MIPMAP
and
COGL_FEATURE_ID_TEXTURE_NPOT_REPEAT
fea-
tures
com-
bined.

Cogl 2.0 Reference Manual 53 / 328

COGL_FEATURE_ID_TEXTURE_RECTANGLE

Support
for
rect-
an-
gu-
lar
tex-
tures
with
non-
normalized
tex-
ture
co-
or-
di-
nates.

COGL_FEATURE_ID_TEXTURE_3D

3D
tex-
ture
sup-
port

COGL_FEATURE_ID_GLSL
GLSL
sup-
port

COGL_FEATURE_ID_OFFSCREEN

Offscreen
ren-
der-
ing
sup-
port

COGL_FEATURE_ID_OFFSCREEN_MULTISAMPLE

Multisample
sup-
port
for
off-
screen
frame-
buffers

COGL_FEATURE_ID_ONSCREEN_MULTIPLE

Multiple
on-
screen
frame-
buffers
sup-
ported.

COGL_FEATURE_ID_UNSIGNED_INT_INDICES

Set
if
COGL_INDICES_TYPE_UNSIGNED_INT
is
sup-
ported
in
cogl_indices_new().

COGL_FEATURE_ID_DEPTH_RANGE
cogl_pipeline_set_depth_range()
sup-
port

Cogl 2.0 Reference Manual 54 / 328

COGL_FEATURE_ID_POINT_SPRITE

Whether
cogl_pipeline_set_layer_point_sprite_coords_enabled()
is
sup-
ported.

COGL_FEATURE_ID_MAP_BUFFER_FOR_READ

Whether
cogl_buffer_map()
is
sup-
ported
with
CoglBuffer-
Ac-
cess
in-
clud-
ing
read
sup-
port.

COGL_FEATURE_ID_MAP_BUFFER_FOR_WRITE

Whether
cogl_buffer_map()
is
sup-
ported
with
CoglBuffer-
Ac-
cess
in-
clud-
ing
write
sup-
port.

COGL_FEATURE_ID_MIRRORED_REPEAT

Whether
COGL_PIPELINE_WRAP_MODE_MIRRORED_REPEAT
is
sup-
ported.

COGL_FEATURE_ID_GLES2_CONTEXT

Whether
cre-
at-
ing
new
GLES2
con-
texts
is
su-
ported.

Cogl 2.0 Reference Manual 55 / 328

COGL_FEATURE_ID_DEPTH_TEXTURE

Whether
Cogl-
Frame-
buffer
sup-
port
ren-
der-
ing
the
depth
buffer
to
a
tex-
ture.

COGL_FEATURE_ID_PRESENTATION_TIME

Whether
frame
pre-
sen-
ta-
tion
time
stamps
will
be
recorded
in
Cogl-
Frame-
Info
ob-
jects.

COGL_FEATURE_ID_FENCE

COGL_FEATURE_ID_PER_VERTEX_POINT_SIZE

Whether
cogl_point_size_in
can
be
used
as
an
at-
tribute
to
set
a
per-
vertex
point
size.

Cogl 2.0 Reference Manual 56 / 328

COGL_FEATURE_ID_TEXTURE_RG

Support
for
COGL_TEXTURE_COMPONENTS_RG
as
the
in-
ter-
nal
com-
po-
nents
of
a
tex-
ture.

Since 1.10

enum CoglReadPixelsFlags

Flags for cogl_framebuffer_read_pixels_into_bitmap()

Members

COGL_READ_PIXELS_COLOR_BUFFER

Read
from
the
color
buffer

Since 1.0

1.4 Setting Up A GPU Pipeline

1.4.1 Blend Strings

Blend Strings — A simple syntax and grammar for describing blending and texture combining functions.

Cogl Blend Strings

Describing GPU blending and texture combining states is rather awkward to do in a consise but also readable fashion. Cogl helps
by supporting string based descriptions using a simple syntax.

1.4.2 Some examples

Here is an example used for blending:

"RGBA = ADD (SRC_COLOR * (SRC_COLOR[A]), DST_COLOR * (1-SRC_COLOR[A]))"

In OpenGL terms this replaces glBlendFunc[Separate] and glBlendEquation[Separate]

Actually in this case it’s more verbose than the GL equivalent:

Cogl 2.0 Reference Manual 57 / 328

glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

But unless you are familiar with OpenGL or refer to its API documentation you wouldn’t know that the default function used
by OpenGL is GL_FUNC_ADD nor would you know that the above arguments determine what the source color and destination
color will be multiplied by before being adding.

Here is an example used for texture combining:

"RGB = REPLACE (PREVIOUS)"
"A = MODULATE (PREVIOUS, TEXTURE)"

In OpenGL terms this replaces glTexEnv, and the above example is equivalent to this OpenGL code:

glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_REPLACE);
glTexEnvi (GL_TEXTURE_ENV, GL_SRC0_RGB, GL_PREVIOUS);
glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi (GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);
glTexEnvi (GL_TEXTURE_ENV, GL_SRC0_ALPHA, GL_PREVIOUS);
glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_COLOR);
glTexEnvi (GL_TEXTURE_ENV, GL_SRC1_ALPHA, GL_TEXTURE);
glTexEnvi (GL_TEXTURE_ENV, GL_OPERAND1_ALPHA, GL_SRC_COLOR);

1.4.3 Here’s the syntax

<statement>:
<channel-mask>=<function-name>(<arg-list>)

You can either use a single statement with an RGBA channel-mask or you can use
two statements; one with an A channel-mask and the other with an RGB
channel-mask.

<channel-mask>:
A or RGB or RGBA

<function-name>:
[A-Za-z_]*

<arg-list>:
<arg>,<arg>
or <arg>
or ""

I.e. functions may take 0 or more arguments

<arg>:
<color-source>
1 - <color-source> : Only intended for texture combining
<color-source> * (<factor>) : Only intended for blending
0 : Only intended for blending

See the blending or texture combining sections for further notes and examples.

<color-source>:
<source-name>[<channel-mask>]
<source-name>

See the blending or texture combining sections for the list of source-names
valid in each context.

Cogl 2.0 Reference Manual 58 / 328

If a channel mask is not given then the channel mask of the statement
is assumed instead.

<factor>:
0
1
<color-source>
1-<color-source>
SRC_ALPHA_SATURATE

1.4.4 Pipeline

Pipeline — Functions for creating and manipulating the GPU pipeline

Functions

CoglPipeline * cogl_pipeline_new ()
CoglPipeline * cogl_pipeline_copy ()
CoglBool cogl_is_pipeline ()
void cogl_pipeline_set_color ()
void cogl_pipeline_set_color4ub ()
void cogl_pipeline_set_color4f ()
void cogl_pipeline_get_color ()
void cogl_pipeline_set_alpha_test_function ()
#define COGL_BLEND_STRING_ERROR
CoglBool cogl_pipeline_set_blend ()
void cogl_pipeline_set_blend_constant ()
void cogl_pipeline_set_point_size ()
float cogl_pipeline_get_point_size ()
CoglBool cogl_pipeline_set_per_vertex_point_size ()
CoglBool cogl_pipeline_get_per_vertex_point_size ()
CoglColorMask cogl_pipeline_get_color_mask ()
void cogl_pipeline_set_color_mask ()
CoglBool cogl_pipeline_set_depth_state ()
void cogl_pipeline_get_depth_state ()
void cogl_pipeline_set_cull_face_mode ()
void cogl_pipeline_set_front_face_winding ()
void cogl_pipeline_set_layer_texture ()
void cogl_pipeline_set_layer_null_texture ()
CoglTexture * cogl_pipeline_get_layer_texture ()
void cogl_pipeline_set_layer_filters ()
CoglPipelineFilter cogl_pipeline_get_layer_min_filter ()
CoglPipelineFilter cogl_pipeline_get_layer_mag_filter ()
void cogl_pipeline_set_layer_wrap_mode ()
void cogl_pipeline_set_layer_wrap_mode_s ()
void cogl_pipeline_set_layer_wrap_mode_t ()
void cogl_pipeline_set_layer_wrap_mode_p ()
CoglBool cogl_pipeline_set_layer_combine ()
void cogl_pipeline_set_layer_combine_constant ()
CoglBool cogl_pipeline_set_layer_point_sprite_coords_enabled ()
CoglBool cogl_pipeline_get_layer_point_sprite_coords_enabled ()
void cogl_pipeline_remove_layer ()
int cogl_pipeline_get_n_layers ()

Cogl 2.0 Reference Manual 59 / 328

CoglBool (*CoglPipelineLayerCallback) ()
void cogl_pipeline_foreach_layer ()
int cogl_pipeline_get_uniform_location ()
void cogl_pipeline_set_uniform_1f ()
void cogl_pipeline_set_uniform_1i ()
void cogl_pipeline_set_uniform_float ()
void cogl_pipeline_set_uniform_int ()
void cogl_pipeline_set_uniform_matrix ()
void cogl_pipeline_add_snippet ()
void cogl_pipeline_add_layer_snippet ()

Types and Values

CoglPipeline
enum CoglPipelineAlphaFunc
enum CoglBlendStringError
enum CoglPipelineCullFaceMode
enum CoglWinding
enum CoglPipelineFilter
enum CoglPipelineWrapMode

Description

Cogl allows creating and manipulating objects representing the full configuration of the GPU pipeline. In simplified terms the
GPU pipeline takes primitive geometry as the input, it first performs vertex processing, allowing you to deform your geometry,
then rasterizes that (turning it from pure geometry into fragments) then performs fragment processing including depth testing
and texture mapping. Finally it blends the result with the framebuffer.

Functions

cogl_pipeline_new ()

CoglPipeline~*
cogl_pipeline_new (CoglContext *context);

Allocates and initializes a default simple pipeline that will color a primitive white.

Parameters

context a CoglContext

Returns

a pointer to a new CoglPipeline

Since 2.0

Stability Level: Unstable

cogl_pipeline_copy ()

CoglPipeline~*
cogl_pipeline_copy (CoglPipeline *source);

Cogl 2.0 Reference Manual 60 / 328

Creates a new pipeline with the configuration copied from the source pipeline.

We would strongly advise developers to always aim to use cogl_pipeline_copy() instead of cogl_pipeline_new() whenever there
will be any similarity between two pipelines. Copying a pipeline helps Cogl keep track of a pipelines ancestry which we may
use to help minimize GPU state changes.

Parameters

source a CoglPipeline object to
copy

Returns

a pointer to the newly allocated CoglPipeline

Since 2.0

Stability Level: Unstable

cogl_is_pipeline ()

CoglBool
cogl_is_pipeline (void *object);

Gets whether the given object references an existing pipeline object.

Parameters

object A CoglObject

Returns

TRUE if the object references a CoglPipeline, FALSE otherwise

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_color ()

void
cogl_pipeline_set_color (CoglPipeline *pipeline,

const CoglColor *color);

Sets the basic color of the pipeline, used when no lighting is enabled.

Note that if you don’t add any layers to the pipeline then the color will be blended unmodified with the destination; the default
blend expects premultiplied colors: for example, use (0.5, 0.0, 0.0, 0.5) for semi-transparent red. See cogl_color_premultiply().

The default value is (1.0, 1.0, 1.0, 1.0)

Parameters

pipeline A CoglPipeline object

color The components of the
color

Cogl 2.0 Reference Manual 61 / 328

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_color4ub ()

void
cogl_pipeline_set_color4ub (CoglPipeline *pipeline,

uint8_t red,
uint8_t green,
uint8_t blue,
uint8_t alpha);

Sets the basic color of the pipeline, used when no lighting is enabled.

The default value is (0xff, 0xff, 0xff, 0xff)

Parameters

pipeline A CoglPipeline object
red The red component
green The green component
blue The blue component
alpha The alpha component

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_color4f ()

void
cogl_pipeline_set_color4f (CoglPipeline *pipeline,

float red,
float green,
float blue,
float alpha);

Sets the basic color of the pipeline, used when no lighting is enabled.

The default value is (1.0, 1.0, 1.0, 1.0)

Parameters

pipeline A CoglPipeline object
red The red component
green The green component
blue The blue component
alpha The alpha component

Since 2.0

Stability Level: Unstable

cogl_pipeline_get_color ()

Cogl 2.0 Reference Manual 62 / 328

void
cogl_pipeline_get_color (CoglPipeline *pipeline,

CoglColor *color);

Retrieves the current pipeline color.

Parameters

pipeline A CoglPipeline object

color The location to store the
color. [out]

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_alpha_test_function ()

void
cogl_pipeline_set_alpha_test_function (CoglPipeline *pipeline,

CoglPipelineAlphaFunc alpha_func,
float alpha_reference);

Before a primitive is blended with the framebuffer, it goes through an alpha test stage which lets you discard fragments based on
the current alpha value. This function lets you change the function used to evaluate the alpha channel, and thus determine which
fragments are discarded and which continue on to the blending stage.

The default is COGL_PIPELINE_ALPHA_FUNC_ALWAYS

Parameters

pipeline A CoglPipeline object

alpha_func A CoglPipelineAlphaF

unc constant

alpha_reference

A reference point that the
chosen alpha function uses
to compare incoming
fragments to.

Since 2.0

Stability Level: Unstable

COGL_BLEND_STRING_ERROR

#define COGL_BLEND_STRING_ERROR (cogl_blend_string_error_domain ())

CoglError domain for blend string parser errors

Since 1.0

cogl_pipeline_set_blend ()

Cogl 2.0 Reference Manual 63 / 328

CoglBool
cogl_pipeline_set_blend (CoglPipeline *pipeline,

const char *blend_string,
CoglError **error);

If not already familiar; please refer here for an overview of what blend strings are, and their syntax.

Blending occurs after the alpha test function, and combines fragments with the framebuffer.

Currently the only blend function Cogl exposes is ADD(). So any valid blend statements will be of the form:

<channel-mask>=ADD(SRC_COLOR*(<factor>), DST_COLOR*(<factor>))

This is the list of source-names usable as blend factors:

• SRC_COLOR: The color of the in comming fragment

• DST_COLOR: The color of the framebuffer

• CONSTANT: The constant set via cogl_pipeline_set_blend_constant()

The source names can be used according to the color-source and factor syntax,

so for example "(1-SRC_COLOR[A])" would be a valid factor, as would "(CONSTANT[RGB])"

These can also be used as factors:

• 0: (0, 0, 0, 0)

• 1: (1, 1, 1, 1)

• SRC_ALPHA_SATURATE_FACTOR: (f,f,f,1) where f = MIN(SRC_COLOR[A],1-DST_COLOR[A])

Note Remember; all color components are normalized to the range [0, 1] before computing the result of blending.

Example 1.1 Blend Strings/1
Blend a non-premultiplied source over a destination with premultiplied alpha:

"RGB = ADD(SRC_COLOR*(SRC_COLOR[A]), DST_COLOR*(1-SRC_COLOR[A]))"
"A = ADD(SRC_COLOR, DST_COLOR*(1-SRC_COLOR[A]))"

Example 1.2 Blend Strings/2
Blend a premultiplied source over a destination with premultiplied alpha

"RGBA = ADD(SRC_COLOR, DST_COLOR*(1-SRC_COLOR[A]))"

The default blend string is:

RGBA = ADD (SRC_COLOR, DST_COLOR*(1-SRC_COLOR[A]))

That gives normal alpha-blending when the calculated color for the pipeline is in premultiplied form.

Cogl 2.0 Reference Manual 64 / 328

Parameters

pipeline A CoglPipeline object

blend_string
A Cogl blend string
describing the desired blend
function.

error

return location for a
CoglError that may report
lack of driver support if you
give separate blend string
statements for the alpha
channel and RGB channels
since some drivers, or
backends such as GLES
1.1, don’t support this
feature. May be NULL, in
which case a warning will
be printed out using GLib’s
logging facilities if an error
is encountered.

Returns

TRUE if the blend string was successfully parsed, and the described blending is supported by the underlying driver/hardware. If
there was an error, FALSE is returned and error is set accordingly (if present).

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_blend_constant ()

void
cogl_pipeline_set_blend_constant (CoglPipeline *pipeline,

const CoglColor *constant_color);

When blending is setup to reference a CONSTANT blend factor then blending will depend on the constant set with this function.

Parameters

pipeline A CoglPipeline object

constant_color The constant color you
want

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_point_size ()

void
cogl_pipeline_set_point_size (CoglPipeline *pipeline,

float point_size);

Changes the size of points drawn when COGL_VERTICES_MODE_POINTS is used with the attribute buffer API. Note that
typically the GPU will only support a limited minimum and maximum range of point sizes. If the chosen point size is outside

Cogl 2.0 Reference Manual 65 / 328

that range then the nearest value within that range will be used instead. The size of a point is in screen space so it will be the
same regardless of any transformations.

If the point size is set to 0.0 then drawing points with the pipeline will have undefined results. This is the default value so if an
application wants to draw points it must make sure to use a pipeline that has an explicit point size set on it.

Parameters

pipeline a CoglPipeline pointer
point_size the new point size.

Since 2.0

Stability Level: Unstable

cogl_pipeline_get_point_size ()

float
cogl_pipeline_get_point_size (CoglPipeline *pipeline);

Get the size of points drawn when COGL_VERTICES_MODE_POINTS is used with the vertex buffer API.

Parameters

pipeline a CoglPipeline pointer

Returns

the point size of the pipeline .

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_per_vertex_point_size ()

CoglBool
cogl_pipeline_set_per_vertex_point_size

(CoglPipeline *pipeline,
CoglBool enable,
CoglError **error);

Sets whether to use a per-vertex point size or to use the value set by cogl_pipeline_set_point_size(). If per-vertex point
size is enabled then the point size can be set for an individual point either by drawing with a CoglAttribute with the name
‘cogl_point_size_in’ or by writing to the GLSL builtin ‘cogl_point_size_out’ from a vertex shader snippet.

If per-vertex point size is enabled and this attribute is not used and cogl_point_size_out is not written to then the results are
undefined.

Note that enabling this will only work if the COGL_FEATURE_ID_PER_VERTEX_POINT_SIZE feature is available. If this is
not available then the function will return FALSE and set a CoglError.

Parameters

pipeline a CoglPipeline pointer

Cogl 2.0 Reference Manual 66 / 328

enable whether to enable
per-vertex point size

error
a location to store a
CoglError if the change
failed

Returns

TRUE if the change suceeded or FALSE otherwise

Since 2.0

Stability Level: Unstable

cogl_pipeline_get_per_vertex_point_size ()

CoglBool
cogl_pipeline_get_per_vertex_point_size

(CoglPipeline *pipeline);

Parameters

pipeline a CoglPipeline pointer

Returns

TRUE if the pipeline has per-vertex point size enabled or FALSE otherwise. The per-vertex point size can be enabled with
cogl_pipeline_set_per_vertex_point_size().

Since 2.0

Stability Level: Unstable

cogl_pipeline_get_color_mask ()

CoglColorMask
cogl_pipeline_get_color_mask (CoglPipeline *pipeline);

Gets the current CoglColorMask of which channels would be written to the current framebuffer. Each bit set in the mask means
that the corresponding color would be written.

Parameters

pipeline a CoglPipeline object.

Returns

A CoglColorMask

Since 1.8

Stability Level: Unstable

cogl_pipeline_set_color_mask ()

Cogl 2.0 Reference Manual 67 / 328

void
cogl_pipeline_set_color_mask (CoglPipeline *pipeline,

CoglColorMask color_mask);

Defines a bit mask of which color channels should be written to the current framebuffer. If a bit is set in color_mask that means
that color will be written.

Parameters

pipeline a CoglPipeline object.

color_mask
A CoglColorMask of which
color channels to write to
the current framebuffer.

Since 1.8

Stability Level: Unstable

cogl_pipeline_set_depth_state ()

CoglBool
cogl_pipeline_set_depth_state (CoglPipeline *pipeline,

const CoglDepthState *state,
CoglError **error);

This commits all the depth state configured in state struct to the given pipeline . The configuration values are copied into
the pipeline so there is no requirement to keep the CoglDepthState struct around if you don’t need it any more.

Note: Since some platforms do not support the depth range feature it is possible for this function to fail and report an error .

Parameters

pipeline A CoglPipeline object
state A CoglDepthState struct

error
A CoglError to report
failures to setup the given
state .

Returns

TRUE if the GPU supports all the given state else FALSE and returns an error .

Since 2.0

Stability Level: Unstable

cogl_pipeline_get_depth_state ()

void
cogl_pipeline_get_depth_state (CoglPipeline *pipeline,

CoglDepthState *state_out);

Retrieves the current depth state configuration for the given pipeline as previously set using cogl_pipeline_set_depth_state().

Cogl 2.0 Reference Manual 68 / 328

Parameters

pipeline A CoglPipeline object

state_out A destination
CoglDepthState struct. [out]

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_cull_face_mode ()

void
cogl_pipeline_set_cull_face_mode (CoglPipeline *pipeline,

CoglPipelineCullFaceMode cull_face_mode);

Sets which faces will be culled when drawing. Face culling can be used to increase efficiency by avoiding drawing faces that
would get overridden. For example, if a model has gaps so that it is impossible to see the inside then faces which are facing away
from the screen will never be seen so there is no point in drawing them. This can be acheived by setting the cull face mode to
COGL_PIPELINE_CULL_FACE_MODE_BACK.

Face culling relies on the primitives being drawn with a specific order to represent which faces are facing inside and outside the
model. This order can be specified by calling cogl_pipeline_set_front_face_winding().

Status: Unstable

Parameters

pipeline A CoglPipeline
cull_face_mode The new mode to set

Since 2.0

cogl_pipeline_set_front_face_winding ()

void
cogl_pipeline_set_front_face_winding (CoglPipeline *pipeline,

CoglWinding front_winding);

The order of the vertices within a primitive specifies whether it is considered to be front or back facing. This function specifies
which order is considered to be the front faces. COGL_WINDING_COUNTER_CLOCKWISE sets the front faces to primitives
with vertices in a counter-clockwise order and COGL_WINDING_CLOCKWISE sets them to be clockwise. The default is
COGL_WINDING_COUNTER_CLOCKWISE.

Status: Unstable

Parameters

pipeline a CoglPipeline
front_winding the winding order

Since 2.0

Cogl 2.0 Reference Manual 69 / 328

cogl_pipeline_set_layer_texture ()

void
cogl_pipeline_set_layer_texture (CoglPipeline *pipeline,

int layer_index,
CoglTexture *texture);

cogl_pipeline_set_layer_null_texture ()

void
cogl_pipeline_set_layer_null_texture (CoglPipeline *pipeline,

int layer_index,
CoglTextureType texture_type);

Sets the texture for this layer to be the default texture for the given type. This is equivalent to calling cogl_pipeline_set_layer_texture()
with NULL for the texture argument except that you can also specify the type of default texture to use. The default texture is a
1x1 pixel white texture.

This function is mostly useful if you want to create a base pipeline that you want to create multiple copies from using cogl_pipeline_copy().
In that case this function can be used to specify the texture type so that any pipeline copies can share the internal texture type
state for efficiency.

Parameters

pipeline A CoglPipeline
layer_index The layer number to modify

texture_type The type of the default
texture to use

Since 1.10

Stability Level: Unstable

cogl_pipeline_get_layer_texture ()

CoglTexture~*
cogl_pipeline_get_layer_texture (CoglPipeline *pipeline,

int layer_index);

Parameters

pipeline A CoglPipeline object
layer_index the index of the layer

Returns

the texture that was set for the given layer of the pipeline or NULL if no texture was set.

Since 1.10

Stability Level: Unstable

cogl_pipeline_set_layer_filters ()

Cogl 2.0 Reference Manual 70 / 328

void
cogl_pipeline_set_layer_filters (CoglPipeline *pipeline,

int layer_index,
CoglPipelineFilter min_filter,
CoglPipelineFilter mag_filter);

Changes the decimation and interpolation filters used when a texture is drawn at other scales than 100%.

Note It is an error to pass anything other than COGL_PIPELINE_FILTER_NEAREST or COGL_PIPELINE_FILTER_LINEAR
as magnification filters since magnification doesn’t ever need to reference values stored in the mipmap chain.

Parameters

pipeline A CoglPipeline object
layer_index the layer number to change.

min_filter the filter used when scaling
a texture down.

mag_filter the filter used when
magnifying a texture.

Since 1.10

Stability Level: Unstable

cogl_pipeline_get_layer_min_filter ()

CoglPipelineFilter
cogl_pipeline_get_layer_min_filter (CoglPipeline *pipeline,

int layer_index);

Retrieves the currently set minification CoglPipelineFilter set on the specified layer. The miniifcation filter determines how the
layer should be sampled when down-scaled.

The default filter is COGL_PIPELINE_FILTER_LINEAR but this can be changed using cogl_pipeline_set_layer_filters().

Parameters

pipeline A CoglPipeline object
layer_index the layer number to change.

Returns

The minification CoglPipelineFilter for the specified layer.

Since 1.10

Stability Level: Unstable

cogl_pipeline_get_layer_mag_filter ()

CoglPipelineFilter
cogl_pipeline_get_layer_mag_filter (CoglPipeline *pipeline,

int layer_index);

Cogl 2.0 Reference Manual 71 / 328

Retrieves the currently set magnification CoglPipelineFilter set on the specified layer. The magnification filter determines how
the layer should be sampled when up-scaled.

The default filter is COGL_PIPELINE_FILTER_LINEAR but this can be changed using cogl_pipeline_set_layer_filters().

Parameters

pipeline A CoglPipeline object
layer_index the layer number to change.

Returns

The magnification CoglPipelineFilter for the specified layer.

Since 1.10

Stability Level: Unstable

cogl_pipeline_set_layer_wrap_mode ()

void
cogl_pipeline_set_layer_wrap_mode (CoglPipeline *pipeline,

int layer_index,
CoglPipelineWrapMode mode);

Sets the wrap mode for all three coordinates of texture lookups on this layer. This is equivalent to calling cogl_pipeline_set_layer_wrap_mode_s(),
cogl_pipeline_set_layer_wrap_mode_t() and cogl_pipeline_set_layer_wrap_mode_p() separately.

Parameters

pipeline A CoglPipeline object
layer_index the layer number to change.
mode the new wrap mode

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_layer_wrap_mode_s ()

void
cogl_pipeline_set_layer_wrap_mode_s (CoglPipeline *pipeline,

int layer_index,
CoglPipelineWrapMode mode);

Sets the wrap mode for the ’s’ coordinate of texture lookups on this layer.

Parameters

pipeline A CoglPipeline object
layer_index the layer number to change.
mode the new wrap mode

Since 2.0

Cogl 2.0 Reference Manual 72 / 328

Stability Level: Unstable

cogl_pipeline_set_layer_wrap_mode_t ()

void
cogl_pipeline_set_layer_wrap_mode_t (CoglPipeline *pipeline,

int layer_index,
CoglPipelineWrapMode mode);

Sets the wrap mode for the ’t’ coordinate of texture lookups on this layer.

Parameters

pipeline A CoglPipeline object
layer_index the layer number to change.
mode the new wrap mode

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_layer_wrap_mode_p ()

void
cogl_pipeline_set_layer_wrap_mode_p (CoglPipeline *pipeline,

int layer_index,
CoglPipelineWrapMode mode);

Sets the wrap mode for the ’p’ coordinate of texture lookups on this layer. ’p’ is the third coordinate.

Parameters

pipeline A CoglPipeline object
layer_index the layer number to change.
mode the new wrap mode

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_layer_combine ()

CoglBool
cogl_pipeline_set_layer_combine (CoglPipeline *pipeline,

int layer_index,
const char *blend_string,
CoglError **error);

If not already familiar; you can refer here for an overview of what blend

strings are and there syntax.

These are all the functions available for texture combining:

• REPLACE(arg0) = arg0

Cogl 2.0 Reference Manual 73 / 328

• MODULATE(arg0, arg1) = arg0 x arg1

• ADD(arg0, arg1) = arg0 + arg1

• ADD_SIGNED(arg0, arg1) = arg0 + arg1 - 0.5

• INTERPOLATE(arg0, arg1, arg2) = arg0 x arg2 + arg1 x (1 - arg2)

• SUBTRACT(arg0, arg1) = arg0 - arg1
•

DOT3_RGB(arg0, arg1) = 4 x ((arg0[R] - 0.5)) * (arg1[R] - 0.5) +
(arg0[G] - 0.5)) * (arg1[G] - 0.5) +
(arg0[B] - 0.5)) * (arg1[B] - 0.5))

•
DOT3_RGBA(arg0, arg1) = 4 x ((arg0[R] - 0.5)) * (arg1[R] - 0.5) +

(arg0[G] - 0.5)) * (arg1[G] - 0.5) +
(arg0[B] - 0.5)) * (arg1[B] - 0.5))

Refer to the color-source syntax for

describing the arguments. The valid source names for texture combining are:

TEXTURE Use the color from the current texture layer

TEXTURE_0, TEXTURE_1, etc Use the color from the specified texture layer

CONSTANT Use the color from the constant given with cogl_pipeline_set_layer_combine_constant()

PRIMARY Use the color of the pipeline as set with cogl_pipeline_set_color()

PREVIOUS Either use the texture color from the previous layer, or if this is layer 0, use the color of the pipeline as set with
cogl_pipeline_set_color()

Layer Combine Examples

This is effectively what the default blending is:

RGBA = MODULATE (PREVIOUS, TEXTURE)

This could be used to cross-fade between two images, using the alpha component of a constant as the interpolator. The constant
color is given by calling cogl_pipeline_set_layer_combine_constant().

RGBA = INTERPOLATE (PREVIOUS, TEXTURE, CONSTANT[A])

Note You can’t give a multiplication factor for arguments as you can with blending.

Parameters

pipeline A CoglPipeline object

layer_index
Specifies the layer you want
define a combine function
for

blend_string
A Cogl blend string
describing the desired
texture combine function.

Cogl 2.0 Reference Manual 74 / 328

error

A CoglError that may
report parse errors or lack
of GPU/driver support.
May be NULL, in which
case a warning will be
printed out if an error is
encountered.

Returns

TRUE if the blend string was successfully parsed, and the described texture combining is supported by the underlying driver and
or hardware. On failure, FALSE is returned and error is set

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_layer_combine_constant ()

void
cogl_pipeline_set_layer_combine_constant

(CoglPipeline *pipeline,
int layer_index,
const CoglColor *constant);

When you are using the ’CONSTANT’ color source in a layer combine description then you can use this function to define its
value.

Parameters

pipeline A CoglPipeline object

layer_index
Specifies the layer you want
to specify a constant used
for texture combining

constant The constant color you
want

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_layer_point_sprite_coords_enabled ()

CoglBool
cogl_pipeline_set_layer_point_sprite_coords_enabled

(CoglPipeline *pipeline,
int layer_index,
CoglBool enable,
CoglError **error);

When rendering points, if enable is TRUE then the texture coordinates for this layer will be replaced with coordinates that vary
from 0.0 to 1.0 across the primitive. The top left of the point will have the coordinates 0.0,0.0 and the bottom right will have
1.0,1.0. If enable is FALSE then the coordinates will be fixed for the entire point.

This function will only work if COGL_FEATURE_ID_POINT_SPRITE is available. If the feature is not available then the
function will return FALSE and set error .

Cogl 2.0 Reference Manual 75 / 328

Parameters

pipeline A CoglPipeline object
layer_index the layer number to change.

enable whether to enable point
sprite coord generation.

error
A return location for a
CoglError, or NULL to
ignore errors.

Returns

TRUE if the function succeeds, FALSE otherwise.

Since 2.0

Stability Level: Unstable

cogl_pipeline_get_layer_point_sprite_coords_enabled ()

CoglBool
cogl_pipeline_get_layer_point_sprite_coords_enabled

(CoglPipeline *pipeline,
int layer_index);

Gets whether point sprite coordinate generation is enabled for this texture layer.

Parameters

pipeline A CoglPipeline object
layer_index the layer number to check.

Returns

whether the texture coordinates will be replaced with point sprite coordinates.

Since 2.0

Stability Level: Unstable

cogl_pipeline_remove_layer ()

void
cogl_pipeline_remove_layer (CoglPipeline *pipeline,

int layer_index);

This function removes a layer from your pipeline

Parameters

pipeline A CoglPipeline object

layer_index Specifies the layer you want
to remove

Cogl 2.0 Reference Manual 76 / 328

Since 1.10

Stability Level: Unstable

cogl_pipeline_get_n_layers ()

int
cogl_pipeline_get_n_layers (CoglPipeline *pipeline);

Retrieves the number of layers defined for the given pipeline

Parameters

pipeline A CoglPipeline object

Returns

the number of layers

Since 2.0

Stability Level: Unstable

CoglPipelineLayerCallback ()

CoglBool
(*CoglPipelineLayerCallback) (CoglPipeline *pipeline,

int layer_index,
void *user_data);

The callback prototype used with cogl_pipeline_foreach_layer() for iterating all the layers of a pipeline .

Parameters

pipeline The CoglPipeline whos
layers are being iterated

layer_index The current layer index

user_data The private data passed to
cogl_pipeline_foreach_layer()

Since 2.0

Stability Level: Unstable

cogl_pipeline_foreach_layer ()

void
cogl_pipeline_foreach_layer (CoglPipeline *pipeline,

CoglPipelineLayerCallback callback,
void *user_data);

Iterates all the layer indices of the given pipeline .

Parameters

Cogl 2.0 Reference Manual 77 / 328

pipeline A CoglPipeline object

callback

A
CoglPipelineLayerCallback
to be called for each layer
index.

[scope call]

user_data Private data that will be
passed to the callback. [closure]

Since 2.0

Stability Level: Unstable

cogl_pipeline_get_uniform_location ()

int
cogl_pipeline_get_uniform_location (CoglPipeline *pipeline,

const char *uniform_name);

This is used to get an integer representing the uniform with the name uniform_name . The integer can be passed to functions
such as cogl_pipeline_set_uniform_1f() to set the value of a uniform.

This function will always return a valid integer. Ie, unlike OpenGL, it does not return -1 if the uniform is not available in this
pipeline so it can not be used to test whether uniforms are present. It is not necessary to set the program on the pipeline before
calling this function.

Parameters

pipeline A CoglPipeline object
uniform_name The name of a uniform

Returns

A integer representing the location of the given uniform.

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_uniform_1f ()

void
cogl_pipeline_set_uniform_1f (CoglPipeline *pipeline,

int uniform_location,
float value);

Sets a new value for the uniform at uniform_location . If this pipeline has a user program attached and is later used as a
source for drawing, the given value will be assigned to the uniform which can be accessed from the shader’s source. The value for
uniform_location should be retrieved from the string name of the uniform by calling cogl_pipeline_get_uniform_location().

This function should be used to set uniforms that are of type float. It can also be used to set a single member of a float array
uniform.

Parameters

pipeline A CoglPipeline object

Cogl 2.0 Reference Manual 78 / 328

uniform_location The uniform’s location
identifier

value The new value for the
uniform

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_uniform_1i ()

void
cogl_pipeline_set_uniform_1i (CoglPipeline *pipeline,

int uniform_location,
int value);

Sets a new value for the uniform at uniform_location . If this pipeline has a user program attached and is later used as a
source for drawing, the given value will be assigned to the uniform which can be accessed from the shader’s source. The value for
uniform_location should be retrieved from the string name of the uniform by calling cogl_pipeline_get_uniform_location().

This function should be used to set uniforms that are of type int. It can also be used to set a single member of a int array uniform
or a sampler uniform.

Parameters

pipeline A CoglPipeline object

uniform_location The uniform’s location
identifier

value The new value for the
uniform

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_uniform_float ()

void
cogl_pipeline_set_uniform_float (CoglPipeline *pipeline,

int uniform_location,
int n_components,
int count,
const float *value);

Sets new values for the uniform at uniform_location . If this pipeline has a user program attached and is later used as a source
for drawing, the given values will be assigned to the uniform which can be accessed from the shader’s source. The value for
uniform_location should be retrieved from the string name of the uniform by calling cogl_pipeline_get_uniform_location().

This function can be used to set any floating point type uniform, including float arrays and float vectors. For example, to set a
single vec4 uniform you would use 4 for n_components and 1 for count . To set an array of 8 float values, you could use 1 for
n_components and 8 for count .

Parameters

pipeline A CoglPipeline object

Cogl 2.0 Reference Manual 79 / 328

uniform_location The uniform’s location
identifier

n_components
The number of components
in the corresponding
uniform’s type

count The number of values to set

value Pointer to the new values to
set

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_uniform_int ()

void
cogl_pipeline_set_uniform_int (CoglPipeline *pipeline,

int uniform_location,
int n_components,
int count,
const int *value);

Sets new values for the uniform at uniform_location . If this pipeline has a user program attached and is later used as a source
for drawing, the given values will be assigned to the uniform which can be accessed from the shader’s source. The value for
uniform_location should be retrieved from the string name of the uniform by calling cogl_pipeline_get_uniform_location().

This function can be used to set any integer type uniform, including int arrays and int vectors. For example, to set a single
ivec4 uniform you would use 4 for n_components and 1 for count . To set an array of 8 int values, you could use 1 for
n_components and 8 for count .

Parameters

pipeline A CoglPipeline object

uniform_location The uniform’s location
identifier

n_components
The number of components
in the corresponding
uniform’s type

count The number of values to set

value Pointer to the new values to
set

Since 2.0

Stability Level: Unstable

cogl_pipeline_set_uniform_matrix ()

void
cogl_pipeline_set_uniform_matrix (CoglPipeline *pipeline,

int uniform_location,
int dimensions,
int count,
CoglBool transpose,
const float *value);

Cogl 2.0 Reference Manual 80 / 328

Sets new values for the uniform at uniform_location . If this pipeline has a user program attached and is later used as a source
for drawing, the given values will be assigned to the uniform which can be accessed from the shader’s source. The value for
uniform_location should be retrieved from the string name of the uniform by calling cogl_pipeline_get_uniform_location().

This function can be used to set any matrix type uniform, including matrix arrays. For example, to set a single mat4 uniform you
would use 4 for dimensions and 1 for count . To set an array of 8 mat3 values, you could use 3 for dimensions and 8 for
count .

If transpose is FALSE then the matrix is expected to be in column-major order or if it is TRUE then the matrix is in row-major
order. You can pass a CoglMatrix by calling by passing the result of cogl_matrix_get_array() in value and setting transpose

to FALSE.

Parameters

pipeline A CoglPipeline object

uniform_location The uniform’s location
identifier

dimensions The size of the matrix
count The number of values to set

transpose Whether to transpose the
matrix

value Pointer to the new values to
set

Since 2.0

Stability Level: Unstable

cogl_pipeline_add_snippet ()

void
cogl_pipeline_add_snippet (CoglPipeline *pipeline,

CoglSnippet *snippet);

Adds a shader snippet to pipeline . The snippet will wrap around or replace some part of the pipeline as defined by the hook
point in snippet . Note that some hook points are specific to a layer and must be added with cogl_pipeline_add_layer_snippet()
instead.

Parameters

pipeline A CoglPipeline

snippet The CoglSnippet to add to
the vertex processing hook

Since 1.10

Stability Level: Unstable

cogl_pipeline_add_layer_snippet ()

void
cogl_pipeline_add_layer_snippet (CoglPipeline *pipeline,

int layer,
CoglSnippet *snippet);

Cogl 2.0 Reference Manual 81 / 328

Adds a shader snippet that will hook on to the given layer of the pipeline. The exact part of the pipeline that the snippet wraps
around depends on the hook that is given to cogl_snippet_new(). Note that some hooks can’t be used with a layer and need to be
added with cogl_pipeline_add_snippet() instead.

Parameters

pipeline A CoglPipeline

layer The layer to hook the
snippet to

snippet A CoglSnippet

Since 1.10

Stability Level: Unstable

Types and Values

CoglPipeline

typedef struct _CoglPipeline CoglPipeline;

enum CoglPipelineAlphaFunc

Alpha testing happens before blending primitives with the framebuffer and gives an opportunity to discard fragments based
on a comparison with the incoming alpha value and a reference alpha value. The CoglPipelineAlphaFunc determines how the
comparison is done.

Members

COGL_PIPELINE_ALPHA_FUNC_NEVER

Never
let
the
frag-
ment
through.

Cogl 2.0 Reference Manual 82 / 328

COGL_PIPELINE_ALPHA_FUNC_LESS

Let
the
frag-
ment
through
if
the
in-
com-
ing
al-
pha
value
is
less
than
the
ref-
er-
ence
al-
pha
value

COGL_PIPELINE_ALPHA_FUNC_EQUAL

Let
the
frag-
ment
through
if
the
in-
com-
ing
al-
pha
value
equals
the
ref-
er-
ence
al-
pha
value

Cogl 2.0 Reference Manual 83 / 328

COGL_PIPELINE_ALPHA_FUNC_LEQUAL

Let
the
frag-
ment
through
if
the
in-
com-
ing
al-
pha
value
is
less
than
or
equal
to
the
ref-
er-
ence
al-
pha
value

COGL_PIPELINE_ALPHA_FUNC_GREATER

Let
the
frag-
ment
through
if
the
in-
com-
ing
al-
pha
value
is
greater
than
the
ref-
er-
ence
al-
pha
value

Cogl 2.0 Reference Manual 84 / 328

COGL_PIPELINE_ALPHA_FUNC_NOTEQUAL

Let
the
frag-
ment
through
if
the
in-
com-
ing
al-
pha
value
does
not
equal
the
ref-
er-
ence
al-
pha
value

COGL_PIPELINE_ALPHA_FUNC_GEQUAL

Let
the
frag-
ment
through
if
the
in-
com-
ing
al-
pha
value
is
greater
than
or
equal
to
the
ref-
er-
ence
al-
pha
value.

COGL_PIPELINE_ALPHA_FUNC_ALWAYS

Always
let
the
frag-
ment
through.

Cogl 2.0 Reference Manual 85 / 328

enum CoglBlendStringError

Error enumeration for the blend strings parser

Members

COGL_BLEND_STRING_ERROR_PARSE_ERROR

Generic
parse
er-
ror

COGL_BLEND_STRING_ERROR_ARGUMENT_PARSE_ERROR

Argument
parse
er-
ror

COGL_BLEND_STRING_ERROR_INVALID_ERROR

Internal
parser
er-
ror

COGL_BLEND_STRING_ERROR_GPU_UNSUPPORTED_ERROR

Blend
string
not
sup-
ported
by
the
GPU

Since 1.0

enum CoglPipelineCullFaceMode

Specifies which faces should be culled. This can be set on a pipeline using cogl_pipeline_set_cull_face_mode().

Members

COGL_PIPELINE_CULL_FACE_MODE_NONE

Neither
face
will
be
culled.
This
is
the
de-
fault.

COGL_PIPELINE_CULL_FACE_MODE_FRONT

Front
faces
will
be
culled.

COGL_PIPELINE_CULL_FACE_MODE_BACK

Back
faces
will
be
culled.

Cogl 2.0 Reference Manual 86 / 328

COGL_PIPELINE_CULL_FACE_MODE_BOTH

All
faces
will
be
culled.

enum CoglWinding

Enum used to represent the two directions of rotation. This can be used to set the front face for culling by calling cogl_pipeline_set_front_face_winding().

Members

COGL_WINDING_CLOCKWISE

Vertices
are
in
a
clock-
wise
or-
der

COGL_WINDING_COUNTER_CLOCKWISE

Vertices
are
in
a
counter-
clockwise
or-
der

enum CoglPipelineFilter

Texture filtering is used whenever the current pixel maps either to more than one texture element (texel) or less than one. These
filter enums correspond to different strategies used to come up with a pixel color, by possibly referring to multiple neighbouring
texels and taking a weighted average or simply using the nearest texel.

Members

Cogl 2.0 Reference Manual 87 / 328

COGL_PIPELINE_FILTER_NEAREST

Measuring
in
man-
hat-
ten
dis-
tance
from
the,
cur-
rent
pixel
cen-
ter,
use
the
near-
est
tex-
ture
texel

COGL_PIPELINE_FILTER_LINEAR

Use
the
weighted
av-
er-
age
of
the
4
tex-
els
near-
est
the
cur-
rent
pixel
cen-
ter

Cogl 2.0 Reference Manual 88 / 328

COGL_PIPELINE_FILTER_NEAREST_MIPMAP_NEAREST

Select
the
mimap
level
whose
texel
size
most
closely
matches
the
cur-
rent
pixel,
and
use
the
COGL_PIPELINE_FILTER_NEAREST
cri-
te-
rion

COGL_PIPELINE_FILTER_LINEAR_MIPMAP_NEAREST

Select
the
mimap
level
whose
texel
size
most
closely
matches
the
cur-
rent
pixel,
and
use
the
COGL_PIPELINE_FILTER_LINEAR
cri-
te-
rion

Cogl 2.0 Reference Manual 89 / 328

COGL_PIPELINE_FILTER_NEAREST_MIPMAP_LINEAR

Select
the
two
mimap
lev-
els
whose
texel
size
most
closely
matches
the
cur-
rent
pixel,
use
the
COGL_PIPELINE_FILTER_NEAREST
cri-
te-
rion
on
each
one
and
take
their
weighted
av-
er-
age

Cogl 2.0 Reference Manual 90 / 328

COGL_PIPELINE_FILTER_LINEAR_MIPMAP_LINEAR

Select
the
two
mimap
lev-
els
whose
texel
size
most
closely
matches
the
cur-
rent
pixel,
use
the
COGL_PIPELINE_FILTER_LINEAR
cri-
te-
rion
on
each
one
and
take
their
weighted
av-
er-
age

enum CoglPipelineWrapMode

The wrap mode specifies what happens when texture coordinates outside the range 0→1 are used. Note that if the filter mode is
anything but COGL_PIPELINE_FILTER_NEAREST then texels outside the range 0→1 might be used even when the coordinate
is exactly 0 or 1 because OpenGL will try to sample neighbouring pixels. For example if you are trying to render the full texture
then you may get artifacts around the edges when the pixels from the other side are merged in if the wrap mode is set to repeat.

Members

Cogl 2.0 Reference Manual 91 / 328

COGL_PIPELINE_WRAP_MODE_REPEAT

The
tex-
ture
will
be
re-
peated.
This
is
use-
ful
for
ex-
am-
ple
to
draw
a
tiled
back-
ground.

COGL_PIPELINE_WRAP_MODE_MIRRORED_REPEAT

Cogl 2.0 Reference Manual 92 / 328

COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE

The
co-
or-
di-
nates
out-
side
the
range
0→1
will
sam-
ple
copies
of
the
edge
pix-
els
of
the
tex-
ture.
This
is
use-
ful
to
avoid
ar-
ti-
facts
if
only
one
copy
of
the
tex-
ture
is
be-
ing
ren-
dered.

Cogl 2.0 Reference Manual 93 / 328

COGL_PIPELINE_WRAP_MODE_AUTOMATIC

Cogl
will
try
to
au-
to-
mat-
i-
cally
de-
cide
which
of
the
above
two
to
use.
For
cogl_framebuffer_draw_rectangle(),
it
will
use
re-
peat
mode
if
any
of
the
tex-
ture
co-
or-
di-
nates
are
out-
side
the
range
0→1,
oth-
er-
wise
it
will
use
clamp
to
edge.
For
cogl_framebuffer_draw_attributes()
or
cogl_primitive_draw()
it
will
use
re-
peat
mode
ex-
cept
for
lay-
ers
that
have
point
sprite
co-
or-
di-
nate
gen-
er-
a-
tion
en-
abled.
This
is
the
de-
fault
value.

Cogl 2.0 Reference Manual 94 / 328

Since 2.0

1.4.5 Depth State

Depth State — Functions for describing the depth testing state of your GPU.

Functions

void cogl_depth_state_init ()
void cogl_depth_state_set_test_enabled ()
CoglBool cogl_depth_state_get_test_enabled ()
void cogl_depth_state_set_test_function ()
CoglDepthTestFunction cogl_depth_state_get_test_function ()
void cogl_depth_state_set_write_enabled ()
CoglBool cogl_depth_state_get_write_enabled ()
void cogl_depth_state_set_range ()
void cogl_depth_state_get_range ()

Types and Values

CoglDepthState
enum CoglDepthTestFunction

Description

Functions

cogl_depth_state_init ()

void
cogl_depth_state_init (CoglDepthState *state);

Initializes the members of state to their default values.

You should never pass an un initialized CoglDepthState structure to cogl_pipeline_set_depth_state().

Parameters

state A CoglDepthState struct

Since 2.0

Stability Level: Unstable

cogl_depth_state_set_test_enabled ()

void
cogl_depth_state_set_test_enabled (CoglDepthState *state,

CoglBool enable);

Enables or disables depth testing according to the value of enable .

Cogl 2.0 Reference Manual 95 / 328

If depth testing is enable then the CoglDepthTestFunction set using cogl_depth_state_set_test_function() us used to evaluate the
depth value of incoming fragments against the corresponding value stored in the current depth buffer, and if the test passes then the
fragments depth value is used to update the depth buffer. (unless you have disabled depth writing via cogl_depth_state_set_write_enabled())

By default depth testing is disabled.

NB: this won’t directly affect the state of the GPU. You have to then set the state on a CoglPipeline using cogl_pipeline_set_depth_state()

Parameters

state A CoglDepthState struct
enable The enable state you want

Since 2.0

Stability Level: Unstable

cogl_depth_state_get_test_enabled ()

CoglBool
cogl_depth_state_get_test_enabled (CoglDepthState *state);

Gets the current depth test enabled state as previously set by cogl_depth_state_set_test_enabled().

Parameters

state A CoglDepthState struct

Returns

The pipeline’s current depth test enabled state.

Since 2.0

Stability Level: Unstable

cogl_depth_state_set_test_function ()

void
cogl_depth_state_set_test_function (CoglDepthState *state,

CoglDepthTestFunction function);

Sets the CoglDepthTestFunction used to compare the depth value of an incoming fragment against the corresponding value in
the current depth buffer.

By default the depth test function is COGL_DEPTH_TEST_FUNCTION_LESS

NB: this won’t directly affect the state of the GPU. You have to then set the state on a CoglPipeline using cogl_pipeline_set_depth_state()

Parameters

state A CoglDepthState struct

function
The
CoglDepthTestFunction to
set

Cogl 2.0 Reference Manual 96 / 328

Since 2.0

Stability Level: Unstable

cogl_depth_state_get_test_function ()

CoglDepthTestFunction
cogl_depth_state_get_test_function (CoglDepthState *state);

Gets the current depth test enable state as previously set via cogl_depth_state_set_test_enabled().

Parameters

state A CoglDepthState struct

Returns

The current depth test enable state.

Since 2.0

Stability Level: Unstable

cogl_depth_state_set_write_enabled ()

void
cogl_depth_state_set_write_enabled (CoglDepthState *state,

CoglBool enable);

Enables or disables depth buffer writing according to the value of enable . Normally when depth testing is enabled and the
comparison between a fragment’s depth value and the corresponding depth buffer value passes then the fragment’s depth is
written to the depth buffer unless writing is disabled here.

By default depth writing is enabled

NB: this won’t directly affect the state of the GPU. You have to then set the state on a CoglPipeline using cogl_pipeline_set_depth_state()

Parameters

state A CoglDepthState struct
enable The enable state you want

Since 2.0

Stability Level: Unstable

cogl_depth_state_get_write_enabled ()

CoglBool
cogl_depth_state_get_write_enabled (CoglDepthState *state);

Gets the depth writing enable state as set by the corresponding cogl_depth_state_set_write_enabled().

Parameters

Cogl 2.0 Reference Manual 97 / 328

state A CoglDepthState struct

Returns

The current depth writing enable state

Since 2.0

Stability Level: Unstable

cogl_depth_state_set_range ()

void
cogl_depth_state_set_range (CoglDepthState *state,

float near_val,
float far_val);

Sets the range to map depth values in normalized device coordinates to before writing out to a depth buffer.

After your geometry has be transformed, clipped and had perspective division applied placing it in normalized device coordinates
all depth values between the near and far z clipping planes are in the range -1 to 1. Before writing any depth value to the depth
buffer though the value is mapped into the range [0, 1].

With this function you can change the range which depth values are mapped too although the range must still lye within the range
[0, 1].

If your driver does not support this feature (for example you are using GLES 1 drivers) then if you don’t use the default
range values you will get an error reported when calling cogl_pipeline_set_depth_state(). You can check ahead of time for
the COGL_FEATURE_ID_DEPTH_RANGE feature with cogl_has_feature() to know if this function will succeed.

By default normalized device coordinate depth values are mapped to the full range of depth buffer values, [0, 1].

NB: this won’t directly affect the state of the GPU. You have to then set the state on a CoglPipeline using cogl_pipeline_set_depth_state().

Parameters

state A CoglDepthState object

near_val

The near component of the
desired depth range which
will be clamped to the
range [0, 1]

far_val

The far component of the
desired depth range which
will be clamped to the
range [0, 1]

Since 2.0

Stability Level: Unstable

cogl_depth_state_get_range ()

void
cogl_depth_state_get_range (CoglDepthState *state,

float *near_val,
float *far_val);

Gets the current range to which normalized depth values are mapped before writing to the depth buffer. This corresponds to the
range set with cogl_depth_state_set_range().

Cogl 2.0 Reference Manual 98 / 328

Parameters

state A CoglDepthState object

near_val
A pointer to store the near
component of the depth
range

far_val
A pointer to store the far
component of the depth
range

Since 2.0

Stability Level: Unstable

Types and Values

CoglDepthState

typedef struct {
} CoglDepthState;

Since 2.0

enum CoglDepthTestFunction

When using depth testing one of these functions is used to compare the depth of an incoming fragment against the depth value
currently stored in the depth buffer. The function is changed using cogl_depth_state_set_test_function().

The test is only done when depth testing is explicitly enabled. (See cogl_depth_state_set_test_enabled())

Members

COGL_DEPTH_TEST_FUNCTION_NEVER Never
passes.

COGL_DEPTH_TEST_FUNCTION_LESS

Passes
if
the
frag-
ment’s
depth
value
is
less
than
the
value
cur-
rently
in
the
depth
buffer.

Cogl 2.0 Reference Manual 99 / 328

COGL_DEPTH_TEST_FUNCTION_EQUAL

Passes
if
the
frag-
ment’s
depth
value
is
equal
to
the
value
cur-
rently
in
the
depth
buffer.

COGL_DEPTH_TEST_FUNCTION_LEQUAL

Passes
if
the
frag-
ment’s
depth
value
is
less
or
equal
to
the
value
cur-
rently
in
the
depth
buffer.

COGL_DEPTH_TEST_FUNCTION_GREATER

Passes
if
the
frag-
ment’s
depth
value
is
greater
than
the
value
cur-
rently
in
the
depth
buffer.

Cogl 2.0 Reference Manual 100 / 328

COGL_DEPTH_TEST_FUNCTION_NOTEQUAL

Passes
if
the
frag-
ment’s
depth
value
is
not
equal
to
the
value
cur-
rently
in
the
depth
buffer.

COGL_DEPTH_TEST_FUNCTION_GEQUAL

Passes
if
the
frag-
ment’s
depth
value
greater
than
or
equal
to
the
value
cur-
rently
in
the
depth
buffer.

COGL_DEPTH_TEST_FUNCTION_ALWAYS Always
passes.

1.4.6 Shader snippets

Shader snippets — Functions for creating and manipulating shader snippets

Functions

CoglSnippet * cogl_snippet_new ()
CoglSnippetHook cogl_snippet_get_hook ()
CoglBool cogl_is_snippet ()
void cogl_snippet_set_declarations ()
const char * cogl_snippet_get_declarations ()
void cogl_snippet_set_pre ()
const char * cogl_snippet_get_pre ()

Cogl 2.0 Reference Manual 101 / 328

void cogl_snippet_set_replace ()
const char * cogl_snippet_get_replace ()
void cogl_snippet_set_post ()
const char * cogl_snippet_get_post ()

Types and Values

CoglSnippet
enum CoglSnippetHook

Description

CoglSnippets are used to modify or replace parts of a CoglPipeline using GLSL. GLSL is a programming language supported by
OpenGL on programmable hardware to provide a more flexible description of what should be rendered. A description of GLSL
itself is outside the scope of this documentation but any good OpenGL book should help to describe it.

Unlike in OpenGL, when using GLSL with Cogl it is possible to write short snippets to replace small sections of the pipeline
instead of having to replace the whole of either the vertex or fragment pipelines. Of course it is also possible to replace the whole
of the pipeline if needed.

Each snippet is a standalone chunk of code which would attach to the pipeline at a particular point. The code is split into four
separate strings (all of which are optional):

declarations
The code in this string will be inserted outside of any function in the global scope of the shader. This can be used to declare
uniforms, attributes, varyings and functions to be used by the snippet.

pre
The code in this string will be inserted before the hook point.

post
The code in this string will be inserted after the hook point. This can be used to modify the results of the builtin generated
code for that hook point.

replace
If present the code in this string will replace the generated code for the hook point.

All of the strings apart from the declarations string of a pipeline are generated in a single function so they can share variables
declared from one string in another. The scope of the code is limited to each snippet so local variables declared in the snippet
will not collide with variables declared in another snippet. However, code in the ’declarations’ string is global to the shader so it
is the application’s responsibility to ensure that variables declared here will not collide with those from other snippets.

The snippets can be added to a pipeline with cogl_pipeline_add_snippet() or cogl_pipeline_add_layer_snippet(). Which function
to use depends on which hook the snippet is targetting. The snippets are all generated in the order they are added to the pipeline.
That is, the post strings are executed in the order they are added to the pipeline and the pre strings are executed in reverse order. If
any replace strings are given for a snippet then any other snippets with the same hook added before that snippet will be ignored.
The different hooks are documented under CoglSnippetHook.

For portability with GLES2, it is recommended not to use the GLSL builtin names such as gl_FragColor. Instead there are
replacement names under the cogl_* namespace which can be used instead. These are:

uniform mat4 cogl_modelview_matrix
The current modelview matrix. This is equivalent to gl_ModelViewMatrix.

uniform mat4 cogl_projection_matrix
The current projection matrix. This is equivalent to gl_ProjectionMatrix.

Cogl 2.0 Reference Manual 102 / 328

uniform mat4 cogl_modelview_projection_matrix
The combined modelview and projection matrix. A vertex shader would typically use this to transform the incoming
vertex position. The separate modelview and projection matrices are usually only needed for lighting calculations. This is
equivalent to gl_ModelViewProjectionMatrix.

In a vertex shader, the following are also available:

attribute vec4 cogl_position_in
The incoming vertex position. This is equivalent to gl_Vertex.

attribute vec4 cogl_color_in
The incoming vertex color. This is equivalent to gl_Color.

attribute vec4 cogl_tex_coord_in
The texture coordinate for layer 0. This is an alternative name for cogl_tex_coord0_in.

attribute vec4 cogl_tex_coord0_in
The texture coordinate for the layer 0. This is equivalent to gl_MultiTexCoord0. There will also be cogl_tex_coord1_in
and so on if more layers are added to the pipeline.

attribute vec3 cogl_normal_in
The normal of the vertex. This is equivalent to gl_Normal.

vec4 cogl_position_out
The calculated position of the vertex. This must be written to in all vertex shaders. This is equivalent to gl_Position.

float cogl_point_size_in
The incoming point size from the cogl_point_size_in attribute. This is only available if cogl_pipeline_set_per_vertex_point_size()
is set on the pipeline.

float cogl_point_size_out
The calculated size of a point. This is equivalent to gl_PointSize.

varying vec4 cogl_color_out
The calculated color of a vertex. This is equivalent to gl_FrontColor.

varying vec4 cogl_tex_coord0_out
The calculated texture coordinate for layer 0 of the pipeline. This is equivalent to gl_TexCoord[0]. There will also be
cogl_tex_coord1_out and so on if more layers are added to the pipeline. In the fragment shader, this varying is called
cogl_tex_coord0_in.

In a fragment shader, the following are also available:

varying vec4 cogl_color_in
The calculated color of a vertex. This is equivalent to gl_FrontColor.

varying vec4 cogl_tex_coord0_in
The texture coordinate for layer 0. This is equivalent to gl_TexCoord[0]. There will also be cogl_tex_coord1_in and so on
if more layers are added to the pipeline.

vec4 cogl_color_out
The final calculated color of the fragment. All fragment shaders must write to this variable. This is equivalent to
gl_FrontColor.

float cogl_depth_out
An optional output variable specifying the depth value to use for this fragment. This is equivalent to gl_FragDepth.

Cogl 2.0 Reference Manual 103 / 328

bool cogl_front_facing
A readonly variable that will be true if the current primitive is front facing. This can be used to implement two-sided
coloring algorithms. This is equivalent to gl_FrontFacing.

vec2 cogl_point_coord
When rendering points, this will contain a vec2 which represents the position within the point of the current fragment.
vec2(0.0,0.0) will be the topleft of the point and vec2(1.0,1.0) will be the bottom right. Note that there is currently a bug
in Cogl where when rendering to an offscreen buffer these coordinates will be upside-down. The value is undefined when
not rendering points. This builtin can only be used if the COGL_FEATURE_ID_POINT_SPRITE feature is available.

Here is an example of using a snippet to add a desaturate effect to the generated color on a pipeline.

CoglPipeline *pipeline = cogl_pipeline_new ();

/* Set up the pipeline here, ie by adding a texture or other
layers */

/* Create the snippet. The first string is the declarations which
we will use to add a uniform. The second is the ’post’ string which
will contain the code to perform the desaturation. */

CoglSnippet *snippet =
cogl_snippet_new (COGL_SNIPPET_HOOK_FRAGMENT,

"uniform float factor;",
"float gray = dot (vec3 (0.299, 0.587, 0.114), "
" cogl_color_out.rgb);"
"cogl_color_out.rgb = mix (vec3 (gray),"
" cogl_color_out.rgb,"
" factor);");

/* Add it to the pipeline */
cogl_pipeline_add_snippet (pipeline, snippet);
/* The pipeline keeps a reference to the snippet

so we don’t need to */
cogl_object_unref (snippet);

/* Update the custom uniform on the pipeline */
int location = cogl_pipeline_get_uniform_location (pipeline, "factor");
cogl_pipeline_set_uniform_1f (pipeline, location, 0.5f);

/* Now we can render with the snippet as usual */
cogl_framebuffer_draw_rectangle (fb, pipeline, 0, 0, 10, 10);

Functions

cogl_snippet_new ()

CoglSnippet~*
cogl_snippet_new (CoglSnippetHook hook,

const char *declarations,
const char *post);

Allocates and initializes a new snippet with the given source strings.

Parameters

Cogl 2.0 Reference Manual 104 / 328

hook
The point in the pipeline
that this snippet will wrap
around or replace.

declarations

The source code for the
declarations for this snippet
or NULL. See
cogl_snippet_set_declarations().

post

The source code to run after
the hook point where this
shader snippet is attached
or NULL. See
cogl_snippet_set_post().

Returns

a pointer to a new CoglSnippet

Since 1.10

Stability Level: Unstable

cogl_snippet_get_hook ()

CoglSnippetHook
cogl_snippet_get_hook (CoglSnippet *snippet);

Parameters

snippet A CoglSnippet

Returns

the hook that was set when cogl_snippet_new() was called.

Since 1.10

Stability Level: Unstable

cogl_is_snippet ()

CoglBool
cogl_is_snippet (void *object);

Gets whether the given object references an existing snippet object.

Parameters

object A CoglObject pointer

Returns

TRUE if the object references a CoglSnippet, FALSE otherwise

Since 1.10

Stability Level: Unstable

Cogl 2.0 Reference Manual 105 / 328

cogl_snippet_set_declarations ()

void
cogl_snippet_set_declarations (CoglSnippet *snippet,

const char *declarations);

Sets a source string that will be inserted in the global scope of the generated shader when this snippet is used on a pipeline. This
string is typically used to declare uniforms, attributes or functions that will be used by the other parts of the snippets.

This function should only be called before the snippet is attached to its first pipeline. After that the snippet should be considered
immutable.

Parameters

snippet A CoglSnippet

declarations
The new source string for
the declarations section of
this snippet.

Since 1.10

Stability Level: Unstable

cogl_snippet_get_declarations ()

const char~*
cogl_snippet_get_declarations (CoglSnippet *snippet);

Parameters

snippet A CoglSnippet

Returns

the source string that was set with cogl_snippet_set_declarations() or NULL if none was set.

Since 1.10

Stability Level: Unstable

cogl_snippet_set_pre ()

void
cogl_snippet_set_pre (CoglSnippet *snippet,

const char *pre);

Sets a source string that will be inserted before the hook point in the generated shader for the pipeline that this snippet is attached
to. Please see the documentation of each hook point in CoglPipeline for a description of how this string should be used.

This function should only be called before the snippet is attached to its first pipeline. After that the snippet should be considered
immutable.

Parameters

Cogl 2.0 Reference Manual 106 / 328

snippet A CoglSnippet

pre
The new source string for
the pre section of this
snippet.

Since 1.10

Stability Level: Unstable

cogl_snippet_get_pre ()

const char~*
cogl_snippet_get_pre (CoglSnippet *snippet);

Parameters

snippet A CoglSnippet

Returns

the source string that was set with cogl_snippet_set_pre() or NULL if none was set.

Since 1.10

Stability Level: Unstable

cogl_snippet_set_replace ()

void
cogl_snippet_set_replace (CoglSnippet *snippet,

const char *replace);

Sets a source string that will be used instead of any generated source code or any previous snippets for this hook point. Please
see the documentation of each hook point in CoglPipeline for a description of how this string should be used.

This function should only be called before the snippet is attached to its first pipeline. After that the snippet should be considered
immutable.

Parameters

snippet A CoglSnippet

replace
The new source string for
the replace section of this
snippet.

Since 1.10

Stability Level: Unstable

cogl_snippet_get_replace ()

const char~*
cogl_snippet_get_replace (CoglSnippet *snippet);

Cogl 2.0 Reference Manual 107 / 328

Parameters

snippet A CoglSnippet

Returns

the source string that was set with cogl_snippet_set_replace() or NULL if none was set.

Since 1.10

Stability Level: Unstable

cogl_snippet_set_post ()

void
cogl_snippet_set_post (CoglSnippet *snippet,

const char *post);

Sets a source string that will be inserted after the hook point in the generated shader for the pipeline that this snippet is attached
to. Please see the documentation of each hook point in CoglPipeline for a description of how this string should be used.

This function should only be called before the snippet is attached to its first pipeline. After that the snippet should be considered
immutable.

Parameters

snippet A CoglSnippet

post
The new source string for
the post section of this
snippet.

Since 1.10

Stability Level: Unstable

cogl_snippet_get_post ()

const char~*
cogl_snippet_get_post (CoglSnippet *snippet);

Parameters

snippet A CoglSnippet

Returns

the source string that was set with cogl_snippet_set_post() or NULL if none was set.

Since 1.10

Stability Level: Unstable

Cogl 2.0 Reference Manual 108 / 328

Types and Values

CoglSnippet

typedef struct _CoglSnippet CoglSnippet;

enum CoglSnippetHook

CoglSnippetHook is used to specify a location within a CoglPipeline where the code of the snippet should be used when it is
attached to a pipeline.

COGL_SNIPPET_HOOK_VERTEX_GLOBALS
Adds a shader snippet at the beginning of the global section of the shader for the vertex processing. Any declarations here
can be shared with all other snippets that are attached to a vertex hook. Only the ‘declarations’ string is used and the other
strings are ignored.

COGL_SNIPPET_HOOK_FRAGMENT_GLOBALS
Adds a shader snippet at the beginning of the global section of the shader for the fragment processing. Any declarations
here can be shared with all other snippets that are attached to a fragment hook. Only the ‘declarations’ string is used and
the other strings are ignored.

COGL_SNIPPET_HOOK_VERTEX
Adds a shader snippet that will hook on to the vertex processing stage of the pipeline. This gives a chance for the ap-
plication to modify the vertex attributes generated by the shader. Typically the snippet will modify cogl_color_out or
cogl_position_out builtins.

The ‘declarations’ string in snippet will be inserted in the global scope of the shader. Use this to declare any uniforms,
attributes or functions that the snippet requires.

The ‘pre’ string in snippet will be inserted at the top of the main() function before any vertex processing is done.

The ‘replace’ string in snippet will be used instead of the generated vertex processing if it is present. This can be used if
the application wants to provide a complete vertex shader and doesn’t need the generated output from Cogl.

The ‘post’ string in snippet will be inserted after all of the standard vertex processing is done. This can be used to modify
the outputs.

COGL_SNIPPET_HOOK_VERTEX_TRANSFORM
Adds a shader snippet that will hook on to the vertex transform stage. Typically the snippet will use the cogl_modelview_matrix,
cogl_projection_matrix and cogl_modelview_projection_matrix matrices and the cogl_position_in attribute. The hook
must write to cogl_position_out. The default processing for this hook will multiply cogl_position_in by the combined
modelview-projection matrix and store it on cogl_position_out.

The ‘declarations’ string in snippet will be inserted in the global scope of the shader. Use this to declare any uniforms,
attributes or functions that the snippet requires.

The ‘pre’ string in snippet will be inserted at the top of the main() function before the vertex transform is done.

The ‘replace’ string in snippet will be used instead of the generated vertex transform if it is present.

The ‘post’ string in snippet will be inserted after all of the standard vertex transformation is done. This can be used to
modify the cogl_position_out in addition to the default processing.

COGL_SNIPPET_HOOK_POINT_SIZE
Adds a shader snippet that will hook on to the point size calculation step within the vertex shader stage. The snippet should
write to the builtin cogl_point_size_out with the new point size. The snippet can either read cogl_point_size_in directly
and write a new value or first read an existing value in cogl_point_size_out that would be set by a previous snippet. Note
that this hook is only used if cogl_pipeline_set_per_vertex_point_size() is enabled on the pipeline.

The ‘declarations’ string in snippet will be inserted in the global scope of the shader. Use this to declare any uniforms,
attributes or functions that the snippet requires.

Cogl 2.0 Reference Manual 109 / 328

The ‘pre’ string in snippet will be inserted just before calculating the point size.

The ‘replace’ string in snippet will be used instead of the generated point size calculation if it is present.

The ‘post’ string in snippet will be inserted after the standard point size calculation is done. This can be used to modify
cogl_point_size_out in addition to the default processing.

COGL_SNIPPET_HOOK_FRAGMENT
Adds a shader snippet that will hook on to the fragment processing stage of the pipeline. This gives a chance for the
application to modify the fragment color generated by the shader. Typically the snippet will modify cogl_color_out.

The ‘declarations’ string in snippet will be inserted in the global scope of the shader. Use this to declare any uniforms,
attributes or functions that the snippet requires.

The ‘pre’ string in snippet will be inserted at the top of the main() function before any fragment processing is done.

The ‘replace’ string in snippet will be used instead of the generated fragment processing if it is present. This can be used
if the application wants to provide a complete fragment shader and doesn’t need the generated output from Cogl.

The ‘post’ string in snippet will be inserted after all of the standard fragment processing is done. At this point the
generated value for the rest of the pipeline state will already be in cogl_color_out so the application can modify the result
by altering this variable.

COGL_SNIPPET_HOOK_TEXTURE_COORD_TRANSFORM
Adds a shader snippet that will hook on to the texture coordinate transformation of a particular layer. This can be used to
replace the processing for a layer or to modify the results.

Within the snippet code for this hook there is an extra variable called cogl_tex_coord and represents the incoming and out-
going texture coordinate. On entry to the hook, cogl_tex_coord contains the value of the corresponding texture coordinate
attribute for this layer. The hook is expected to modify this variable. The output will be passed as a varying to the fragment
processing stage. The default code will leave cogl_tex_coord untouched.

The ‘declarations’ string in snippet will be inserted in the global scope of the shader. Use this to declare any uniforms,
attributes or functions that the snippet requires.

The ‘pre’ string in snippet will be inserted just before the fragment processing for this layer. At this point cogl_tex_coord
still contains the value of the texture coordinate attribute.

If a ‘replace’ string is given then this will be used instead of the default fragment processing for this layer. The snippet can
modify cogl_tex_coord or leave it as is to apply no transformation.

The ‘post’ string in snippet will be inserted just after the transformation. At this point cogl_tex_coord will contain the
results of the transformation but it can be further modified by the snippet.

COGL_SNIPPET_HOOK_LAYER_FRAGMENT
Adds a shader snippet that will hook on to the fragment processing of a particular layer. This can be used to replace the
processing for a layer or to modify the results.

Within the snippet code for this hook there is an extra vec4 variable called ‘cogl_layer’. This contains the resulting color
that will be used for the layer. This can be modified in the ‘post’ section or it the default processing can be replaced entirely
using the ‘replace’ section.

The ‘declarations’ string in snippet will be inserted in the global scope of the shader. Use this to declare any uniforms,
attributes or functions that the snippet requires.

The ‘pre’ string in snippet will be inserted just before the fragment processing for this layer.

If a ‘replace’ string is given then this will be used instead of the default fragment processing for this layer. The snippet
must write to the ‘cogl_layer’ variable in that case.

The ‘post’ string in snippet will be inserted just after the fragment processing for the layer. The results can be modified
by changing the value of the ‘cogl_layer’ variable.

COGL_SNIPPET_HOOK_TEXTURE_LOOKUP
Adds a shader snippet that will hook on to the texture lookup part of a given layer. This gives a chance for the application
to modify the coordinates that will be used for the texture lookup or to alter the returned texel.

Within the snippet code for this hook there are three extra variables available. ‘cogl_sampler’ is a sampler object rep-
resenting the sampler for the layer where the snippet is attached. ‘cogl_tex_coord’ is a vec4 which contains the texture

Cogl 2.0 Reference Manual 110 / 328

coordinates that will be used for the texture lookup. This can be modified. ‘cogl_texel’ will contain the result of the texture
lookup. This can also be modified.

The ‘declarations’ string in snippet will be inserted in the global scope of the shader. Use this to declare any uniforms,
attributes or functions that the snippet requires.

The ‘pre’ string in snippet will be inserted at the top of the main() function before any fragment processing is done. This
is a good place to modify the cogl_tex_coord variable.

If a ‘replace’ string is given then this will be used instead of a the default texture lookup. The snippet would typically use
its own sampler in this case.

The ‘post’ string in snippet will be inserted after texture lookup has been preformed. Here the snippet can modify the
cogl_texel variable to alter the returned texel.

Members

COGL_SNIPPET_HOOK_VERTEX

A
hook
for
the
en-
tire
ver-
tex
pro-
cess-
ing
stage
of
the
pipeline.

COGL_SNIPPET_HOOK_VERTEX_TRANSFORM

A
hook
for
the
ver-
tex
trans-
for-
ma-
tion.

Cogl 2.0 Reference Manual 111 / 328

COGL_SNIPPET_HOOK_VERTEX_GLOBALS

A
hook
for
declar-
ing
global
data
that
can
be
shared
with
all
other
snip-
pets
that
are
on
a
ver-
tex
hook.

COGL_SNIPPET_HOOK_POINT_SIZE

A
hook
for
ma-
nip-
u-
lat-
ing
the
point
size
of
a
ver-
tex.
This
is
only
used
if
cogl_pipeline_set_per_vertex_point_size()
is
en-
abled
on
the
pipeline.

Cogl 2.0 Reference Manual 112 / 328

COGL_SNIPPET_HOOK_FRAGMENT

A
hook
for
the
en-
tire
frag-
ment
pro-
cess-
ing
stage
of
the
pipeline.

COGL_SNIPPET_HOOK_FRAGMENT_GLOBALS

A
hook
for
declar-
ing
global
data
wthat
can
be
shared
with
all
other
snip-
pets
that
are
on
a
frag-
ment
hook.

COGL_SNIPPET_HOOK_TEXTURE_COORD_TRANSFORM

A
hook
for
trans-
form-
ing
the
tex-
ture
co-
or-
di-
nates
for
a
layer.

Cogl 2.0 Reference Manual 113 / 328

COGL_SNIPPET_HOOK_LAYER_FRAGMENT

A
hook
for
the
frag-
ment
pro-
cess-
ing
of
a
par-
tic-
u-
lar
layer.

COGL_SNIPPET_HOOK_TEXTURE_LOOKUP

A
hook
for
the
tex-
ture
lookup
stage
of
a
given
layer
in
a
pipeline.

Since 1.10

Stability Level: Unstable

1.5 Allocating GPU Memory

1.5.1 CoglBuffer: The Buffer Interface

CoglBuffer: The Buffer Interface — Common buffer functions, including data upload APIs

Stability Level

Unstable, unless otherwise indicated

Functions

CoglBool cogl_is_buffer ()
unsigned int cogl_buffer_get_size ()
void cogl_buffer_set_update_hint ()
CoglBufferUpdateHint cogl_buffer_get_update_hint ()
void * cogl_buffer_map ()

Cogl 2.0 Reference Manual 114 / 328

void * cogl_buffer_map_range ()
void cogl_buffer_unmap ()
CoglBool cogl_buffer_set_data ()
CoglPixelBuffer * cogl_pixel_buffer_new ()
CoglBool cogl_is_pixel_buffer ()

Types and Values

typedef CoglBuffer
enum CoglBufferUpdateHint
enum CoglBufferAccess
enum CoglBufferMapHint

CoglPixelBuffer

Description

The CoglBuffer API provides a common interface to manipulate buffers that have been allocated either via cogl_pixel_buffer_new()
or cogl_attribute_buffer_new(). The API allows you to upload data to these buffers and define usage hints that help Cogl manage
your buffer optimally.

Data can either be uploaded by supplying a pointer and size so Cogl can copy your data, or you can mmap() a CoglBuffer and
then you can copy data to the buffer directly.

One of the most common uses for CoglBuffers is to upload texture data asynchronously since the ability to mmap the buffers into
the CPU makes it possible for another thread to handle the IO of loading an image file and unpacking it into the mapped buffer
without blocking other Cogl operations.

Functions

cogl_is_buffer ()

CoglBool
cogl_is_buffer (void *object);

Checks whether buffer is a buffer object.

Parameters

object a buffer object

Returns

TRUE if the handle is a CoglBuffer, and FALSE otherwise

Since 1.2

Stability Level: Unstable

cogl_buffer_get_size ()

unsigned int
cogl_buffer_get_size (CoglBuffer *buffer);

Retrieves the size of buffer

Cogl 2.0 Reference Manual 115 / 328

Parameters

buffer a buffer object

Returns

the size of the buffer in bytes

Since 1.2

Stability Level: Unstable

cogl_buffer_set_update_hint ()

void
cogl_buffer_set_update_hint (CoglBuffer *buffer,

CoglBufferUpdateHint hint);

Sets the update hint on a buffer. See CoglBufferUpdateHint for a description of the available hints.

Parameters

buffer a buffer object
hint the new hint

Since 1.2

Stability Level: Unstable

cogl_buffer_get_update_hint ()

CoglBufferUpdateHint
cogl_buffer_get_update_hint (CoglBuffer *buffer);

Retrieves the update hints set using cogl_buffer_set_update_hint()

Parameters

buffer a buffer object

Returns

the CoglBufferUpdateHint currently used by the buffer

Since 1.2

Stability Level: Unstable

cogl_buffer_map ()

void~*
cogl_buffer_map (CoglBuffer *buffer,

CoglBufferAccess access,
CoglBufferMapHint hints,
CoglError **error);

Cogl 2.0 Reference Manual 116 / 328

Maps the buffer into the application address space for direct access. This is equivalent to calling cogl_buffer_map_range() with
zero as the offset and the size of the entire buffer as the size.

It is strongly recommended that you pass COGL_BUFFER_MAP_HINT_DISCARD as a hint if you are going to replace all the
buffer’s data. This way if the buffer is currently being used by the GPU then the driver won’t have to stall the CPU and wait for
the hardware to finish because it can instead allocate a new buffer to map.

The behaviour is undefined if you access the buffer in a way conflicting with the access mask you pass. It is also an error to
release your last reference while the buffer is mapped.

Parameters

buffer a buffer object

access how the mapped buffer will
be used by the application

hints

A mask of
CoglBufferMapHints that
tell Cogl how the data will
be modified once mapped.

error A CoglError for catching
exceptional errors

Returns

A pointer to the mapped memory or NULL is the call fails.

[transfer none]

Since 1.2

Stability Level: Unstable

cogl_buffer_map_range ()

void~*
cogl_buffer_map_range (CoglBuffer *buffer,

size_t offset,
size_t size,
CoglBufferAccess access,
CoglBufferMapHint hints,
CoglError **error);

Maps a sub-region of the buffer into the application’s address space for direct access.

It is strongly recommended that you pass COGL_BUFFER_MAP_HINT_DISCARD as a hint if you are going to replace all the
buffer’s data. This way if the buffer is currently being used by the GPU then the driver won’t have to stall the CPU and wait for the
hardware to finish because it can instead allocate a new buffer to map. You can pass COGL_BUFFER_MAP_HINT_DISCARD_RANGE
instead if you want the regions outside of the mapping to be retained.

The behaviour is undefined if you access the buffer in a way conflicting with the access mask you pass. It is also an error to
release your last reference while the buffer is mapped.

Parameters

buffer a buffer object

offset Offset within the buffer to
start the mapping

size The size of data to map

Cogl 2.0 Reference Manual 117 / 328

access how the mapped buffer will
be used by the application

hints

A mask of
CoglBufferMapHints that
tell Cogl how the data will
be modified once mapped.

error A CoglError for catching
exceptional errors

Returns

A pointer to the mapped memory or NULL is the call fails.

[transfer none]

Since 2.0

Stability Level: Unstable

cogl_buffer_unmap ()

void
cogl_buffer_unmap (CoglBuffer *buffer);

Unmaps a buffer previously mapped by cogl_buffer_map().

Parameters

buffer a buffer object

Since 1.2

Stability Level: Unstable

cogl_buffer_set_data ()

CoglBool
cogl_buffer_set_data (CoglBuffer *buffer,

size_t offset,
const void *data,
size_t size,
CoglError **error);

Updates part of the buffer with new data from data . Where to put this new data is controlled by offset and offset + data

should be less than the buffer size.

Parameters

buffer a buffer object

offset destination offset (in bytes)
in the buffer

data a pointer to the data to be
copied into the buffer

size number of bytes to copy

error A CoglError for catching
exceptional errors

Cogl 2.0 Reference Manual 118 / 328

Returns

TRUE is the operation succeeded, FALSE otherwise

Since 1.2

Stability Level: Unstable

cogl_pixel_buffer_new ()

CoglPixelBuffer~*
cogl_pixel_buffer_new (CoglContext *context,

size_t size,
const void *data,
CoglError **error);

Declares a new CoglPixelBuffer of size bytes to contain arrays of pixels. Once declared, data can be set using cogl_buffer_set_data()
or by mapping it into the application’s address space using cogl_buffer_map().

If data isn’t NULL then size bytes will be read from data and immediately copied into the new buffer.

Parameters

context A CoglContext

size The number of bytes to
allocate for the pixel data.

data
An optional pointer to
vertex data to upload
immediately

error A CoglError for catching
exceptional errors

Returns

a newly allocated CoglPixelBuffer.

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_is_pixel_buffer ()

CoglBool
cogl_is_pixel_buffer (void *object);

Checks whether object is a pixel buffer.

Parameters

object a CoglObject to test

Returns

TRUE if the object is a pixel buffer, and FALSE otherwise

Cogl 2.0 Reference Manual 119 / 328

Since 1.2

Stability Level: Unstable

Types and Values

CoglBuffer

typedef void CoglBuffer;

enum CoglBufferUpdateHint

The update hint on a buffer allows the user to give some detail on how often the buffer data is going to be updated.

Members

COGL_BUFFER_UPDATE_HINT_STATIC

the
buffer
will
not
change
over
time

COGL_BUFFER_UPDATE_HINT_DYNAMIC

the
buffer
will
change
from
time
to
time

COGL_BUFFER_UPDATE_HINT_STREAM

the
buffer
will
be
used
once
or
a
cou-
ple
of
times

Since 1.2

Stability Level: Unstable

enum CoglBufferAccess

The access hints for cogl_buffer_set_update_hint()

Members

Cogl 2.0 Reference Manual 120 / 328

COGL_BUFFER_ACCESS_READ

the
buffer
will
be
read

COGL_BUFFER_ACCESS_WRITE

the
buffer
will
writ-
ten
to

COGL_BUFFER_ACCESS_READ_WRITE

the
buffer
will
be
used
for
both
read-
ing
and
writ-
ing

Since 1.2

Stability Level: Unstable

enum CoglBufferMapHint

Hints to Cogl about how you are planning to modify the data once it is mapped.

Members

Cogl 2.0 Reference Manual 121 / 328

COGL_BUFFER_MAP_HINT_DISCARD

Tells
Cogl
that
you
plan
to
re-
place
all
the
buffer’s
con-
tents.
When
this
flag
is
used
to
map
a
buffer,
the
en-
tire
con-
tents
of
the
buffer
be-
come
un-
de-
fined,
even
if
only
a
sub-
re-
gion
of
the
buffer
is
mapped.

Cogl 2.0 Reference Manual 122 / 328

COGL_BUFFER_MAP_HINT_DISCARD_RANGE

Tells
Cogl
that
you
plan
to
re-
place
all
the
con-
tents
of
the
mapped
re-
gion.
The
con-
tents
of
the
re-
gion
spec-
i-
fied
are
un-
de-
fined
af-
ter
this
flag
is
used
to
map
a
buffer.

Since 1.4

Stability Level: Unstable

CoglPixelBuffer

typedef struct _CoglPixelBuffer CoglPixelBuffer;

1.5.2 CoglAttributeBuffer: Buffers of vertex attributes

CoglAttributeBuffer: Buffers of vertex attributes — Functions for creating and manipulating attribute buffers

Cogl 2.0 Reference Manual 123 / 328

Functions

Cogl 2.0 Reference Manual 124 / 328

CoglAttributeBuffer * cogl_attribute_buffer_new_with_size ()
CoglAttributeBuffer * cogl_attribute_buffer_new ()
CoglBool cogl_is_attribute_buffer ()

Types and Values

CoglAttributeBuffer

Description

FIXME

Functions

cogl_attribute_buffer_new_with_size ()

CoglAttributeBuffer~*
cogl_attribute_buffer_new_with_size (CoglContext *context,

size_t bytes);

Describes a new CoglAttributeBuffer of size bytes to contain arrays of vertex attribute data. Afterwards data can be set using
cogl_buffer_set_data() or by mapping it into the application’s address space using cogl_buffer_map().

The underlying storage of this buffer isn’t allocated by this function so that you have an opportunity to use the cogl_buffer_set_update_hint()
and cogl_buffer_set_usage_hint() functions which may influence how the storage is allocated. The storage will be allocated once
you upload data to the buffer.

Note: You can assume this function always succeeds and won’t return NULL

Parameters

context A CoglContext

bytes
The number of bytes to
allocate for vertex attribute
data.

Returns

A newly allocated CoglAttributeBuffer. Never NULL.

[transfer full]

Stability Level: Unstable

cogl_attribute_buffer_new ()

CoglAttributeBuffer~*
cogl_attribute_buffer_new (CoglContext *context,

size_t bytes,
const void *data);

Describes a new CoglAttributeBuffer of size bytes to contain arrays of vertex attribute data and also uploads size bytes read
from data to the new buffer.

You should never pass a NULL data pointer.

Cogl 2.0 Reference Manual 125 / 328

Note This function does not report out-of-memory errors back to the caller by returning NULL and so you can assume this
function always succeeds.

Note In the unlikely case that there is an out of memory problem then Cogl will abort the application with a message. If your
application needs to gracefully handle out-of-memory errors then you can use cogl_attribute_buffer_new_with_size() and then
explicitly catch errors with cogl_buffer_set_data() or cogl_buffer_map().

Parameters

context A CoglContext

bytes
The number of bytes to
allocate for vertex attribute
data.

data
An optional pointer to
vertex data to upload
immediately.

[array length=bytes]

Returns

A newly allocated CoglAttributeBuffer (never NULL).

[transfer full]

Since 1.4

Stability Level: Unstable

cogl_is_attribute_buffer ()

CoglBool
cogl_is_attribute_buffer (void *object);

Gets whether the given object references a CoglAttributeBuffer.

Parameters

object A CoglObject

Returns

TRUE if object references a CoglAttributeBuffer, FALSE otherwise

Since 1.4

Stability Level: Unstable

Types and Values

CoglAttributeBuffer

typedef struct _CoglAttributeBuffer CoglAttributeBuffer;

Cogl 2.0 Reference Manual 126 / 328

1.5.3 CoglIndexBuffer: Buffers of vertex indices

CoglIndexBuffer: Buffers of vertex indices — Functions for creating and manipulating vertex indices.

Functions

CoglIndexBuffer * cogl_index_buffer_new ()
CoglBool cogl_is_index_buffer ()

Types and Values

CoglIndexBuffer

Description

FIXME

Functions

cogl_index_buffer_new ()

CoglIndexBuffer~*
cogl_index_buffer_new (CoglContext *context,

size_t bytes);

Declares a new CoglIndexBuffer of size bytes to contain vertex indices. Once declared, data can be set using cogl_buffer_set_data()
or by mapping it into the application’s address space using cogl_buffer_map().

Parameters

context A CoglContext

bytes
The number of bytes to
allocate for vertex attribute
data.

Returns

A newly allocated CoglIndexBuffer.

[transfer full]

Since 1.4

Stability Level: Unstable

cogl_is_index_buffer ()

CoglBool
cogl_is_index_buffer (void *object);

Gets whether the given object references a CoglIndexBuffer.

Parameters

Cogl 2.0 Reference Manual 127 / 328

object A CoglObject

Returns

TRUE if the object references a CoglIndexBuffer, FALSE otherwise

Since 1.4

Stability Level: Unstable

Types and Values

CoglIndexBuffer

typedef struct _CoglIndexBuffer CoglIndexBuffer;

1.6 Describing the layout of GPU Memory

1.6.1 Vertex Attributes

Vertex Attributes — Functions for declaring and drawing vertex attributes

Functions

CoglAttribute * cogl_attribute_new ()
CoglBool cogl_is_attribute ()
void cogl_attribute_set_normalized ()
CoglBool cogl_attribute_get_normalized ()
CoglAttributeBuffer * cogl_attribute_get_buffer ()
void cogl_attribute_set_buffer ()

Types and Values

CoglAttribute

Description

FIXME

Functions

cogl_attribute_new ()

CoglAttribute~*
cogl_attribute_new (CoglAttributeBuffer *attribute_buffer,

const char *name,
size_t stride,
size_t offset,
int components,
CoglAttributeType type);

Cogl 2.0 Reference Manual 128 / 328

Describes the layout for a list of vertex attribute values (For example, a list of texture coordinates or colors).

The name is used to access the attribute inside a GLSL vertex shader and there are some special names you should use if they are
applicable:

• "cogl_position_in" (used for vertex positions)

• "cogl_color_in" (used for vertex colors)

• "cogl_tex_coord0_in", "cogl_tex_coord1", ... (used for vertex texture coordinates)

• "cogl_normal_in" (used for vertex normals)

• "cogl_point_size_in" (used to set the size of points per-vertex. Note this can only be used if COGL_FEATURE_ID_POINT_SIZE_ATTRIBUTE
is advertised and cogl_pipeline_set_per_vertex_point_size() is called on the pipeline.

The attribute values corresponding to different vertices can either be tightly packed or interleaved with other attribute values. For
example it’s common to define a structure for a single vertex like:

typedef struct
{

float x, y, z; /<!-- -->* position attribute *<!-- -->/
float s, t; /<!-- -->* texture coordinate attribute *<!-- -->/

} MyVertex;

And then create an array of vertex data something like:

MyVertex vertices[100] = { }

In this case, to describe either the position or texture coordinate attribute you have to move sizeof (MyVertex) bytes to
move from one vertex to the next. This is called the attribute stride . If you weren’t interleving attributes and you instead had
a packed array of float x, y pairs then the attribute stride would be (2 * sizeof (float)). So the stride is the number
of bytes to move to find the attribute value of the next vertex.

Normally a list of attributes starts at the beginning of an array. So for the MyVertex example above the offset is the offset
inside the MyVertex structure to the first component of the attribute. For the texture coordinate attribute the offset would
be offsetof (MyVertex, s) or instead of using the offsetof macro you could use sizeof (float) * 3. If you’ve
divided your array into blocks of non-interleved attributes then you will need to calculate the offset as the number of bytes
in blocks preceding the attribute you’re describing.

An attribute often has more than one component. For example a color is often comprised of 4 red, green, blue and alpha
components , and a position may be comprised of 2 x and y components . You should aim to keep the number of components
to a minimum as more components means more data needs to be mapped into the GPU which can be a bottlneck when dealing
with a large number of vertices.

Finally you need to specify the component data type. Here you should aim to use the smallest type that meets your precision
requirements. Again the larger the type then more data needs to be mapped into the GPU which can be a bottlneck when dealing
with a large number of vertices.

Parameters

attribute_buffer
The CoglAttributeBuffer
containing the actual
attribute data

name
The name of the attribute
(used to reference it from
GLSL)

stride

The number of bytes to
jump to get to the next
attribute value for the next
vertex. (Usually sizeof
(MyVertex))

Cogl 2.0 Reference Manual 129 / 328

offset

The byte offset from the
start of
attribute_buffer for
the first attribute value.
(Usually offsetof
(MyVertex,
component0)

components
The number of components
(e.g. 4 for an rgba color or 3
for and (x,y,z) position)

type FIXME

Returns

A newly allocated CoglAttribute describing the layout for a list of attribute values stored in array .

[transfer full]

Since 1.4

Stability Level: Unstable

cogl_is_attribute ()

CoglBool
cogl_is_attribute (void *object);

Gets whether the given object references a CoglAttribute.

Parameters

object A CoglObject

Returns

TRUE if the object references a CoglAttribute, FALSE otherwise

cogl_attribute_set_normalized ()

void
cogl_attribute_set_normalized (CoglAttribute *attribute,

CoglBool normalized);

Sets whether fixed point attribute types are mapped to the range 0→1. For example when this property is TRUE and a
COGL_ATTRIBUTE_TYPE_UNSIGNED_BYTE type is used then the value 255 will be mapped to 1.0.

The default value of this property depends on the name of the attribute. For the builtin properties cogl_color_in and cogl_normal_in
it will default to TRUE and for all other names it will default to FALSE.

Parameters

attribute A CoglAttribute

normalized The new value for the
normalized property.

Cogl 2.0 Reference Manual 130 / 328

Since 1.10

Stability Level: Unstable

cogl_attribute_get_normalized ()

CoglBool
cogl_attribute_get_normalized (CoglAttribute *attribute);

Parameters

attribute A CoglAttribute

Returns

the value of the normalized property set with cogl_attribute_set_normalized().

Since 1.10

Stability Level: Unstable

cogl_attribute_get_buffer ()

CoglAttributeBuffer~*
cogl_attribute_get_buffer (CoglAttribute *attribute);

Parameters

attribute A CoglAttribute

Returns

the CoglAttributeBuffer that was set with cogl_attribute_set_buffer() or cogl_attribute_new().

[transfer none]

Since 1.10

Stability Level: Unstable

cogl_attribute_set_buffer ()

void
cogl_attribute_set_buffer (CoglAttribute *attribute,

CoglAttributeBuffer *attribute_buffer);

Sets a new CoglAttributeBuffer for the attribute.

Parameters

attribute A CoglAttribute
attribute_buffer A CoglAttributeBuffer

Cogl 2.0 Reference Manual 131 / 328

Since 1.10

Stability Level: Unstable

Types and Values

CoglAttribute

typedef struct _CoglAttribute CoglAttribute;

1.6.2 Indices

Indices — Describe vertex indices stored in a CoglIndexBuffer.

Functions

CoglBool cogl_is_indices ()
CoglIndices * cogl_indices_new ()
CoglIndices * cogl_get_rectangle_indices ()

Types and Values

CoglIndices
enum CoglIndicesType

Description

Indices allow you to avoid duplicating vertices in your vertex data by virtualizing your data and instead providing a sequence of
index values that tell the GPU which data should be used for each vertex.

If the GPU is given a sequence of indices it doesn’t simply walk through each vertex of your data in order it will instead walk
through the indices which can provide random access to the underlying data.

Since it’s very common to have duplicate vertices when describing a shape as a list of triangles it can often be a significant space
saving to describe geometry using indices. Reducing the size of your models can make it cheaper to map them into the GPU by
reducing the demand on memory bandwidth and may help to make better use of your GPUs internal vertex caching.

For example, to describe a quadrilateral as 2 triangles for the GPU you could either provide data with 6 vertices or instead with
indices you can provide vertex data for just 4 vertices and an index buffer that specfies the 6 vertices by indexing the shared
vertices multiple times.

CoglVertex2f quad_vertices[] = {
{x0, y0}, //0 = top left
{x1, y1}, //1 = bottom left
{x2, y2}, //2 = bottom right
{x3, y3}, //3 = top right

};
//tell the gpu how to interpret the quad as 2 triangles...
unsigned char indices[] = {0, 1, 2, 0, 2, 3};

Even in the above illustration we see a saving of 10bytes for one quad compared to having data for 6 vertices and no indices but
if you need to draw 100s or 1000s of quads then its really quite significant.

Something else to consider is that often indices can be defined once and remain static while the vertex data may change for
animations perhaps. That means you may be able to ignore the negligable cost of mapping your indices into the GPU if they
don’t ever change.

Cogl 2.0 Reference Manual 132 / 328

The above illustration is actually a good example of static indices because it’s really common that developers have quad mesh
data that they need to display and we know exactly what that indices array needs to look like depending on the number of quads
that need to be drawn. It doesn’t matter how the quads might be animated and changed the indices will remain the same. Cogl
even has a utility (cogl_get_rectangle_indices()) to get access to re-useable indices for drawing quads as above.

Functions

cogl_is_indices ()

CoglBool
cogl_is_indices (void *object);

Gets whether the given object references a CoglIndices.

Parameters

object A CoglObject pointer

Returns

TRUE if the object references a CoglIndices and FALSE otherwise.

Since 1.10

Stability Level: Unstable

cogl_indices_new ()

CoglIndices~*
cogl_indices_new (CoglContext *context,

CoglIndicesType type,
const void *indices_data,
int n_indices);

cogl_get_rectangle_indices ()

CoglIndices~*
cogl_get_rectangle_indices (CoglContext *context,

int n_rectangles);

Types and Values

CoglIndices

typedef struct _CoglIndices CoglIndices;

enum CoglIndicesType

You should aim to use the smallest data type that gives you enough range, since it reduces the size of your index array and can
help reduce the demand on memory bandwidth.

Note that COGL_INDICES_TYPE_UNSIGNED_INT is only supported if the COGL_FEATURE_ID_UNSIGNED_INT_INDICES
feature is available. This should always be available on OpenGL but on OpenGL ES it will only be available if the GL_OES_element_index_uint
extension is advertized.

Cogl 2.0 Reference Manual 133 / 328

Members

COGL_INDICES_TYPE_UNSIGNED_BYTE

Your
in-
dices
are
un-
signed
bytes

COGL_INDICES_TYPE_UNSIGNED_SHORT

Your
in-
dices
are
un-
signed
shorts

COGL_INDICES_TYPE_UNSIGNED_INT

Your
in-
dices
are
un-
signed
ints

1.7 Geometry

1.7.1 Primitives

Primitives — Functions for creating, manipulating and drawing primitives

Functions

CoglPrimitive * cogl_primitive_new ()
CoglPrimitive * cogl_primitive_new_with_attributes ()
CoglPrimitive * cogl_primitive_new_p2 ()
CoglPrimitive * cogl_primitive_new_p3 ()
CoglPrimitive * cogl_primitive_new_p2c4 ()
CoglPrimitive * cogl_primitive_new_p3c4 ()
CoglPrimitive * cogl_primitive_new_p2t2 ()
CoglPrimitive * cogl_primitive_new_p3t2 ()
CoglPrimitive * cogl_primitive_new_p2t2c4 ()
CoglPrimitive * cogl_primitive_new_p3t2c4 ()
CoglBool cogl_is_primitive ()
int cogl_primitive_get_first_vertex ()
void cogl_primitive_set_first_vertex ()
int cogl_primitive_get_n_vertices ()
void cogl_primitive_set_n_vertices ()
CoglVerticesMode cogl_primitive_get_mode ()
void cogl_primitive_set_mode ()
void cogl_primitive_set_attributes ()
CoglIndices * cogl_primitive_get_indices ()
void cogl_primitive_set_indices ()
CoglPrimitive * cogl_primitive_copy ()

Cogl 2.0 Reference Manual 134 / 328

CoglBool (*CoglPrimitiveAttributeCallback) ()
void cogl_primitive_foreach_attribute ()
void cogl_primitive_draw ()

Types and Values

CoglPrimitive

Description

FIXME

Functions

cogl_primitive_new ()

CoglPrimitive~*
cogl_primitive_new (CoglVerticesMode mode,

int n_vertices,
...);

Combines a set of CoglAttributes with a specific draw mode and defines a vertex count so a CoglPrimitive object can be retained
and drawn later with no addition information required.

The value passed as n_verticeswill simply update the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices()
were called. This property defines the number of vertices to read when drawing.

Parameters

mode
A CoglVerticesMode
defining how to draw the
vertices

n_vertices The number of vertices to
process when drawing

... A NULL terminated list of
attributes

Returns

A newly allocated CoglPrimitive object.

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_with_attributes ()

CoglPrimitive~*
cogl_primitive_new_with_attributes (CoglVerticesMode mode,

int n_vertices,
CoglAttribute **attributes,
int n_attributes);

Cogl 2.0 Reference Manual 135 / 328

Combines a set of CoglAttributes with a specific draw mode and defines a vertex count so a CoglPrimitive object can be retained
and drawn later with no addition information required.

The value passed as n_verticeswill simply update the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices()
were called. This property defines the number of vertices to read when drawing.

Parameters

mode
A CoglVerticesMode
defining how to draw the
vertices

n_vertices The number of vertices to
process when drawing

attributes An array of CoglAttribute
n_attributes The number of attributes

Returns

A newly allocated CoglPrimitive object.

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_p2 ()

CoglPrimitive~*
cogl_primitive_new_p2 (CoglContext *context,

CoglVerticesMode mode,
int n_vertices,
const CoglVertexP2 *data);

data : (array length=n_vertices): (type Cogl.VertexP2): An array of CoglVertexP2 vertices

Provides a convenient way to describe a primitive, such as a single triangle strip or a triangle fan, that will internally allocate the
necessary CoglAttributeBuffer storage, describe the position attribute with a CoglAttribute and upload your data.

For example to draw a convex polygon you can do:

CoglVertexP2 triangle[] =
{

{ 0, 300 },
{ 150, 0, },
{ 300, 300 }

};
prim = cogl_primitive_new_p2 (COGL_VERTICES_MODE_TRIANGLE_FAN,

3, triangle);
cogl_primitive_draw (prim);

The value passed as n_vertices is initially used to determine how much can be read from data but it will also be used to update
the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices() were called. This property defines the number of
vertices to read when drawing.

Note The primitive API doesn’t support drawing with high-level meta texture types such as CoglTexture2DSliced or CoglAt-
lasTexture so you need to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D,
CoglTextureRectangle or CoglTexture3D are associated with the layers of any pipeline used while drawing a primitive.

Cogl 2.0 Reference Manual 136 / 328

Parameters

context A CoglContext

mode
A CoglVerticesMode
defining how to draw the
vertices

n_vertices

The number of vertices to
read from data and also
the number of vertices to
read when later drawing.

Returns

A newly allocated CoglPrimitive with a reference of 1. This can be freed using cogl_object_unref().

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_p3 ()

CoglPrimitive~*
cogl_primitive_new_p3 (CoglContext *context,

CoglVerticesMode mode,
int n_vertices,
const CoglVertexP3 *data);

Provides a convenient way to describe a primitive, such as a single triangle strip or a triangle fan, that will internally allocate the
necessary CoglAttributeBuffer storage, describe the position attribute with a CoglAttribute and upload your data.

For example to draw a convex polygon you can do:

CoglVertexP3 triangle[] =
{

{ 0, 300, 0 },
{ 150, 0, 0 },
{ 300, 300, 0 }

};
prim = cogl_primitive_new_p3 (COGL_VERTICES_MODE_TRIANGLE_FAN,

3, triangle);
cogl_primitive_draw (prim);

The value passed as n_vertices is initially used to determine how much can be read from data but it will also be used to update
the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices() were called. This property defines the number of
vertices to read when drawing.

Note The primitive API doesn’t support drawing with high-level meta texture types such as CoglTexture2DSliced or CoglAt-
lasTexture so you need to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D,
CoglTextureRectangle or CoglTexture3D are associated with the layers of any pipeline used while drawing a primitive.

Parameters

context A CoglContext

Cogl 2.0 Reference Manual 137 / 328

mode
A CoglVerticesMode
defining how to draw the
vertices

n_vertices

The number of vertices to
read from data and also
the number of vertices to
read when later drawing.

data
(type Cogl.VertexP3): An
array of CoglVertexP3
vertices.

[array length=n_vertices]

Returns

A newly allocated CoglPrimitive with a reference of 1. This can be freed using cogl_object_unref().

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_p2c4 ()

CoglPrimitive~*
cogl_primitive_new_p2c4 (CoglContext *context,

CoglVerticesMode mode,
int n_vertices,
const CoglVertexP2C4 *data);

Provides a convenient way to describe a primitive, such as a single triangle strip or a triangle fan, that will internally allocate the
necessary CoglAttributeBuffer storage, describe the position and color attributes with CoglAttributes and upload your data.

For example to draw a convex polygon with a linear gradient you can do:

CoglVertexP2C4 triangle[] =
{

{ 0, 300, 0xff, 0x00, 0x00, 0xff },
{ 150, 0, 0x00, 0xff, 0x00, 0xff },
{ 300, 300, 0xff, 0x00, 0x00, 0xff }

};
prim = cogl_primitive_new_p2c4 (COGL_VERTICES_MODE_TRIANGLE_FAN,

3, triangle);
cogl_primitive_draw (prim);

The value passed as n_vertices is initially used to determine how much can be read from data but it will also be used to update
the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices() were called. This property defines the number of
vertices to read when drawing.

Note The primitive API doesn’t support drawing with high-level meta texture types such as CoglTexture2DSliced or CoglAt-
lasTexture so you need to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D,
CoglTextureRectangle or CoglTexture3D are associated with the layers of any pipeline used while drawing a primitive.

Parameters

context A CoglContext

mode
A CoglVerticesMode
defining how to draw the
vertices

Cogl 2.0 Reference Manual 138 / 328

n_vertices

The number of vertices to
read from data and also
the number of vertices to
read when later drawing.

data
(type Cogl.VertexP2C4):
An array of
CoglVertexP2C4 vertices.

[array length=n_vertices]

Returns

A newly allocated CoglPrimitive with a reference of 1. This can be freed using cogl_object_unref().

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_p3c4 ()

CoglPrimitive~*
cogl_primitive_new_p3c4 (CoglContext *context,

CoglVerticesMode mode,
int n_vertices,
const CoglVertexP3C4 *data);

Provides a convenient way to describe a primitive, such as a single triangle strip or a triangle fan, that will internally allocate the
necessary CoglAttributeBuffer storage, describe the position and color attributes with CoglAttributes and upload your data.

For example to draw a convex polygon with a linear gradient you can do:

CoglVertexP3C4 triangle[] =
{

{ 0, 300, 0, 0xff, 0x00, 0x00, 0xff },
{ 150, 0, 0, 0x00, 0xff, 0x00, 0xff },
{ 300, 300, 0, 0xff, 0x00, 0x00, 0xff }

};
prim = cogl_primitive_new_p3c4 (COGL_VERTICES_MODE_TRIANGLE_FAN,

3, triangle);
cogl_primitive_draw (prim);

The value passed as n_vertices is initially used to determine how much can be read from data but it will also be used to update
the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices() were called. This property defines the number of
vertices to read when drawing.

Note The primitive API doesn’t support drawing with high-level meta texture types such as CoglTexture2DSliced or CoglAt-
lasTexture so you need to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D,
CoglTextureRectangle or CoglTexture3D are associated with the layers of any pipeline used while drawing a primitive.

Parameters

context A CoglContext

mode
A CoglVerticesMode
defining how to draw the
vertices

Cogl 2.0 Reference Manual 139 / 328

n_vertices

The number of vertices to
read from data and also
the number of vertices to
read when later drawing.

data
(type Cogl.VertexP3C4):
An array of
CoglVertexP3C4 vertices.

[array length=n_vertices]

Returns

A newly allocated CoglPrimitive with a reference of 1. This can be freed using cogl_object_unref().

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_p2t2 ()

CoglPrimitive~*
cogl_primitive_new_p2t2 (CoglContext *context,

CoglVerticesMode mode,
int n_vertices,
const CoglVertexP2T2 *data);

Provides a convenient way to describe a primitive, such as a single triangle strip or a triangle fan, that will internally allocate the
necessary CoglAttributeBuffer storage, describe the position and texture coordinate attributes with CoglAttributes and upload
your data.

For example to draw a convex polygon with texture mapping you can do:

CoglVertexP2T2 triangle[] =
{

{ 0, 300, 0.0, 1.0},
{ 150, 0, 0.5, 0.0},
{ 300, 300, 1.0, 1.0}

};
prim = cogl_primitive_new_p2t2 (COGL_VERTICES_MODE_TRIANGLE_FAN,

3, triangle);
cogl_primitive_draw (prim);

The value passed as n_vertices is initially used to determine how much can be read from data but it will also be used to update
the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices() were called. This property defines the number of
vertices to read when drawing.

Note The primitive API doesn’t support drawing with high-level meta texture types such as CoglTexture2DSliced or CoglAt-
lasTexture so you need to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D,
CoglTextureRectangle or CoglTexture3D are associated with the layers of any pipeline used while drawing a primitive.

Parameters

context A CoglContext

mode
A CoglVerticesMode
defining how to draw the
vertices

Cogl 2.0 Reference Manual 140 / 328

n_vertices

The number of vertices to
read from data and also
the number of vertices to
read when later drawing.

data
(type Cogl.VertexP2T2):
An array of
CoglVertexP2T2 vertices.

[array length=n_vertices]

Returns

A newly allocated CoglPrimitive with a reference of 1. This can be freed using cogl_object_unref().

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_p3t2 ()

CoglPrimitive~*
cogl_primitive_new_p3t2 (CoglContext *context,

CoglVerticesMode mode,
int n_vertices,
const CoglVertexP3T2 *data);

Provides a convenient way to describe a primitive, such as a single triangle strip or a triangle fan, that will internally allocate the
necessary CoglAttributeBuffer storage, describe the position and texture coordinate attributes with CoglAttributes and upload
your data.

For example to draw a convex polygon with texture mapping you can do:

CoglVertexP3T2 triangle[] =
{

{ 0, 300, 0, 0.0, 1.0},
{ 150, 0, 0, 0.5, 0.0},
{ 300, 300, 0, 1.0, 1.0}

};
prim = cogl_primitive_new_p3t2 (COGL_VERTICES_MODE_TRIANGLE_FAN,

3, triangle);
cogl_primitive_draw (prim);

The value passed as n_vertices is initially used to determine how much can be read from data but it will also be used to update
the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices() were called. This property defines the number of
vertices to read when drawing.

Note The primitive API doesn’t support drawing with high-level meta texture types such as CoglTexture2DSliced or CoglAt-
lasTexture so you need to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D,
CoglTextureRectangle or CoglTexture3D are associated with the layers of any pipeline used while drawing a primitive.

Parameters

context A CoglContext

mode
A CoglVerticesMode
defining how to draw the
vertices

Cogl 2.0 Reference Manual 141 / 328

n_vertices

The number of vertices to
read from data and also
the number of vertices to
read when later drawing.

data
(type Cogl.VertexP3T2):
An array of
CoglVertexP3T2 vertices.

[array length=n_vertices]

Returns

A newly allocated CoglPrimitive with a reference of 1. This can be freed using cogl_object_unref().

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_p2t2c4 ()

CoglPrimitive~*
cogl_primitive_new_p2t2c4 (CoglContext *context,

CoglVerticesMode mode,
int n_vertices,
const CoglVertexP2T2C4 *data);

Provides a convenient way to describe a primitive, such as a single triangle strip or a triangle fan, that will internally allocate
the necessary CoglAttributeBuffer storage, describe the position, texture coordinate and color attributes with CoglAttributes and
upload your data.

For example to draw a convex polygon with texture mapping and a linear gradient you can do:

CoglVertexP2T2C4 triangle[] =
{

{ 0, 300, 0.0, 1.0, 0xff, 0x00, 0x00, 0xff},
{ 150, 0, 0.5, 0.0, 0x00, 0xff, 0x00, 0xff},
{ 300, 300, 1.0, 1.0, 0xff, 0x00, 0x00, 0xff}

};
prim = cogl_primitive_new_p2t2c4 (COGL_VERTICES_MODE_TRIANGLE_FAN,

3, triangle);
cogl_primitive_draw (prim);

The value passed as n_vertices is initially used to determine how much can be read from data but it will also be used to update
the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices() were called. This property defines the number of
vertices to read when drawing.

Note The primitive API doesn’t support drawing with high-level meta texture types such as CoglTexture2DSliced or CoglAt-
lasTexture so you need to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D,
CoglTextureRectangle or CoglTexture3D are associated with the layers of any pipeline used while drawing a primitive.

Parameters

context A CoglContext

mode
A CoglVerticesMode
defining how to draw the
vertices

Cogl 2.0 Reference Manual 142 / 328

n_vertices

The number of vertices to
read from data and also
the number of vertices to
read when later drawing.

data

(type Cogl.VertexP2T2C4):
An array of
CoglVertexP2T2C4
vertices.

[array length=n_vertices]

Returns

A newly allocated CoglPrimitive with a reference of 1. This can be freed using cogl_object_unref().

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_primitive_new_p3t2c4 ()

CoglPrimitive~*
cogl_primitive_new_p3t2c4 (CoglContext *context,

CoglVerticesMode mode,
int n_vertices,
const CoglVertexP3T2C4 *data);

Provides a convenient way to describe a primitive, such as a single triangle strip or a triangle fan, that will internally allocate
the necessary CoglAttributeBuffer storage, describe the position, texture coordinate and color attributes with CoglAttributes and
upload your data.

For example to draw a convex polygon with texture mapping and a linear gradient you can do:

CoglVertexP3T2C4 triangle[] =
{

{ 0, 300, 0, 0.0, 1.0, 0xff, 0x00, 0x00, 0xff},
{ 150, 0, 0, 0.5, 0.0, 0x00, 0xff, 0x00, 0xff},
{ 300, 300, 0, 1.0, 1.0, 0xff, 0x00, 0x00, 0xff}

};
prim = cogl_primitive_new_p3t2c4 (COGL_VERTICES_MODE_TRIANGLE_FAN,

3, triangle);
cogl_primitive_draw (prim);

The value passed as n_vertices is initially used to determine how much can be read from data but it will also be used to update
the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices() were called. This property defines the number of
vertices to read when drawing.

Note The primitive API doesn’t support drawing with high-level meta texture types such as CoglTexture2DSliced or CoglAt-
lasTexture so you need to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D,
CoglTextureRectangle or CoglTexture3D are associated with the layers of any pipeline used while drawing a primitive.

Parameters

context A CoglContext

mode
A CoglVerticesMode
defining how to draw the
vertices

Cogl 2.0 Reference Manual 143 / 328

n_vertices

The number of vertices to
read from data and also
the number of vertices to
read when later drawing.

data

(type Cogl.VertexP3T2C4):
An array of
CoglVertexP3T2C4
vertices.

[array length=n_vertices]

Returns

A newly allocated CoglPrimitive with a reference of 1. This can be freed using cogl_object_unref().

[transfer full]

Since 1.6

Stability Level: Unstable

cogl_is_primitive ()

CoglBool
cogl_is_primitive (void *object);

Gets whether the given object references a CoglPrimitive.

Parameters

object A CoglObject

Returns

TRUE if the object references a CoglPrimitive, FALSE otherwise

Since 1.6

Stability Level: Unstable

cogl_primitive_get_first_vertex ()

int
cogl_primitive_get_first_vertex (CoglPrimitive *primitive);

cogl_primitive_set_first_vertex ()

void
cogl_primitive_set_first_vertex (CoglPrimitive *primitive,

int first_vertex);

cogl_primitive_get_n_vertices ()

int
cogl_primitive_get_n_vertices (CoglPrimitive *primitive);

Cogl 2.0 Reference Manual 144 / 328

Queries the number of vertices to read when drawing the given primitive . Usually this value is implicitly set when associating
vertex data or indices with a CoglPrimitive.

If cogl_primitive_set_indices() has been used to associate a sequence of CoglIndices with the given primitive then the number
of vertices to read can also be phrased as the number of indices to read.

Note To be clear; it doesn’t refer to the number of vertices - in terms of data - associated with the primitive it’s just the number
of vertices to read and draw.

Parameters

primitive A CoglPrimitive object

Returns

The number of vertices to read when drawing.

Since 1.8

Stability Level: Unstable

cogl_primitive_set_n_vertices ()

void
cogl_primitive_set_n_vertices (CoglPrimitive *primitive,

int n_vertices);

Specifies how many vertices should be read when drawing the given primitive .

Usually this value is set implicitly when associating vertex data or indices with a CoglPrimitive.

Note To be clear; it doesn’t refer to the number of vertices - in terms of data - associated with the primitive it’s just the number
of vertices to read and draw.

Parameters

primitive A CoglPrimitive object

n_vertices The number of vertices to
read when drawing.

Since 1.8

Stability Level: Unstable

cogl_primitive_get_mode ()

CoglVerticesMode
cogl_primitive_get_mode (CoglPrimitive *primitive);

cogl_primitive_set_mode ()

Cogl 2.0 Reference Manual 145 / 328

void
cogl_primitive_set_mode (CoglPrimitive *primitive,

CoglVerticesMode mode);

cogl_primitive_set_attributes ()

void
cogl_primitive_set_attributes (CoglPrimitive *primitive,

CoglAttribute **attributes,
int n_attributes);

Replaces all the attributes of the given CoglPrimitive object.

Parameters

primitive A CoglPrimitive object

attributes an array of CoglAttribute
pointers

n_attributes the number of elements in
attributes

Since 1.6

Stability Level: Unstable

cogl_primitive_get_indices ()

CoglIndices~*
cogl_primitive_get_indices (CoglPrimitive *primitive);

Parameters

primitive A CoglPrimitive

Returns

the indices that were set with cogl_primitive_set_indices() or NULL if no indices were set.

[transfer none]

Since 1.10

Stability Level: Unstable

cogl_primitive_set_indices ()

void
cogl_primitive_set_indices (CoglPrimitive *primitive,

CoglIndices *indices,
int n_indices);

Associates a sequence of CoglIndices with the given primitive .

Cogl 2.0 Reference Manual 146 / 328

CoglIndices provide a way to virtualize your real vertex data by providing a sequence of indices that index into your real vertex
data. The GPU will walk though the index values to indirectly lookup the data for each vertex instead of sequentially walking
through the data directly. This lets you save memory by indexing shared data multiple times instead of duplicating the data.

The value passed as n_indiceswill simply update the CoglPrimitive n_vertices property as if cogl_primitive_set_n_vertices()
were called. This property defines the number of vertices to draw or, put another way, how many indices should be read from
indices when drawing.

Note The CoglPrimitivefirst_vertex property also affects drawing with indices by defining the first entry of the indices to
start drawing from.

Parameters

primitive A CoglPrimitive
indices A CoglIndices array

n_indices The number of indices to
reference when drawing

Since 1.10

Stability Level: Unstable

cogl_primitive_copy ()

CoglPrimitive~*
cogl_primitive_copy (CoglPrimitive *primitive);

Makes a copy of an existing CoglPrimitive. Note that the primitive is a shallow copy which means it will use the same attributes
and attribute buffers as the original primitive.

Parameters

primitive A primitive copy

Returns

the new primitive.

[transfer full]

Since 1.10

Stability Level: Unstable

CoglPrimitiveAttributeCallback ()

CoglBool
(*CoglPrimitiveAttributeCallback) (CoglPrimitive *primitive,

CoglAttribute *attribute,
void *user_data);

The callback prototype used with cogl_primitive_foreach_attribute() for iterating all the attributes of a CoglPrimitive.

The function should return TRUE to continue iteration or FALSE to stop.

Cogl 2.0 Reference Manual 147 / 328

Parameters

primitive The CoglPrimitive whose
attributes are being iterated

attribute The CoglAttribute

user_data The private data passed to
cogl_primitive_foreach_attribute()

Since 1.10

Stability Level: Unstable

cogl_primitive_foreach_attribute ()

void
cogl_primitive_foreach_attribute (CoglPrimitive *primitive,

CoglPrimitiveAttributeCallback callback,
void *user_data);

Iterates all the attributes of the given CoglPrimitive.

Parameters

primitive A CoglPrimitive object

callback
A CoglPrimitiveAttribute-
Callback to be called for
each attribute.

[scope call]

user_data Private data that will be
passed to the callback. [closure]

Since 1.10

Stability Level: Unstable

cogl_primitive_draw ()

void
cogl_primitive_draw (CoglPrimitive *primitive,

CoglFramebuffer *framebuffer,
CoglPipeline *pipeline);

Draws the given primitive geometry to the specified destination framebuffer using the graphics processing state described
by pipeline .

This drawing api doesn’t support high-level meta texture types such as CoglTexture2DSliced so it is the user’s responsibility
to ensure that only low-level textures that can be directly sampled by a GPU such as CoglTexture2D, CoglTextureRectangle or
CoglTexture3D are associated with layers of the given pipeline .

Parameters

primitive A CoglPrimitive geometry
object

framebuffer A destination
CoglFramebuffer

pipeline A CoglPipeline state object

Cogl 2.0 Reference Manual 148 / 328

Since 1.16

Stability Level: Unstable

Types and Values

CoglPrimitive

typedef struct _CoglPrimitive CoglPrimitive;

1.7.2 Path Primitives

Path Primitives —

Description

Functions

Types and Values

1.8 Textures

1.8.1 Bitmap

Bitmap — Functions for loading images

Functions

CoglBool cogl_is_bitmap ()
CoglBitmap * cogl_bitmap_new_from_file ()
CoglBitmap * cogl_bitmap_new_from_buffer ()
CoglBitmap * cogl_bitmap_new_with_size ()
CoglBitmap * cogl_bitmap_new_for_data ()
CoglPixelFormat cogl_bitmap_get_format ()
int cogl_bitmap_get_width ()
int cogl_bitmap_get_height ()
int cogl_bitmap_get_rowstride ()
CoglPixelBuffer * cogl_bitmap_get_buffer ()
CoglBool cogl_bitmap_get_size_from_file ()
#define COGL_BITMAP_ERROR

Types and Values

CoglBitmap
enum CoglBitmapError

Description

Cogl allows loading image data into memory as CoglBitmaps without loading them immediately into GPU textures.

CoglBitmap is available since Cogl 1.0

Cogl 2.0 Reference Manual 149 / 328

Functions

cogl_is_bitmap ()

CoglBool
cogl_is_bitmap (void *object);

Checks whether object is a CoglBitmap

Parameters

object a CoglObject pointer

Returns

TRUE if the passed object represents a bitmap, and FALSE otherwise

Since 1.0

cogl_bitmap_new_from_file ()

CoglBitmap~*
cogl_bitmap_new_from_file (CoglContext *context,

const char *filename,
CoglError **error);

Loads an image file from disk. This function can be safely called from within a thread.

Parameters

context A CoglContext
filename the file to load.
error a CoglError or NULL.

Returns

a CoglBitmap to the new loaded image data, or NULL if loading the image failed.

[transfer full]

Since 1.0

cogl_bitmap_new_from_buffer ()

CoglBitmap~*
cogl_bitmap_new_from_buffer (CoglBuffer *buffer,

CoglPixelFormat format,
int width,
int height,
int rowstride,
int offset);

Wraps some image data that has been uploaded into a CoglBuffer as a CoglBitmap. The data is not copied in this process.

Cogl 2.0 Reference Manual 150 / 328

Parameters

Cogl 2.0 Reference Manual 151 / 328

buffer A CoglBuffer containing
image data

format

The CoglPixelFormat
defining the format of the
image data in the given
buffer .

width The width of the image data
in the given buffer .

height The height of the image
data in the given buffer .

rowstride
The rowstride in bytes of
the image data in the given
buffer .

offset

The offset into the given
buffer to the first pixel
that should be considered
part of the CoglBitmap.

Returns

a CoglBitmap encapsulating the given buffer .

[transfer full]

Since 1.8

Stability Level: Unstable

cogl_bitmap_new_with_size ()

CoglBitmap~*
cogl_bitmap_new_with_size (CoglContext *context,

unsigned int width,
unsigned int height,
CoglPixelFormat format);

Creates a new CoglBitmap with the given width, height and format. The initial contents of the bitmap are undefined.

The data for the bitmap will be stored in a newly created CoglPixelBuffer. You can get a pointer to the pixel buffer using
cogl_bitmap_get_buffer(). The CoglBuffer API can then be used to fill the bitmap with data.

Note Cogl will try its best to provide a hardware array you can map, write into and effectively do a zero copy upload when
creating a texture from it with cogl_texture_new_from_bitmap(). For various reasons, such arrays are likely to have a stride
larger than width * bytes_per_pixel. The user must take the stride into account when writing into it. The stride can be retrieved
with cogl_bitmap_get_rowstride().

Parameters

context A CoglContext

width width of the bitmap in
pixels

height height of the bitmap in
pixels

format the format of the pixels the
array will store

Cogl 2.0 Reference Manual 152 / 328

Returns

a CoglPixelBuffer representing the newly created array or NULL on failure.

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_bitmap_new_for_data ()

CoglBitmap~*
cogl_bitmap_new_for_data (CoglContext *context,

int width,
int height,
CoglPixelFormat format,
int rowstride,
uint8_t *data);

Creates a bitmap using some existing data. The data is not copied so the application must keep the buffer alive for the lifetime
of the CoglBitmap. This can be used for example with cogl_framebuffer_read_pixels_into_bitmap() to read data directly into an
application buffer with the specified rowstride.

Parameters

context A CoglContext
width The width of the bitmap.
height The height of the bitmap.

format The format of the pixel
data.

rowstride

The rowstride of the bitmap
(the number of bytes from
the start of one row of the
bitmap to the next).

data
A pointer to the data. The
bitmap will take ownership
of this data.

Returns

A new CoglBitmap.

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_bitmap_get_format ()

CoglPixelFormat
cogl_bitmap_get_format (CoglBitmap *bitmap);

Parameters

bitmap A CoglBitmap

Cogl 2.0 Reference Manual 153 / 328

Returns

the CoglPixelFormat that the data for the bitmap is in.

Since 1.10

Stability Level: Unstable

cogl_bitmap_get_width ()

int
cogl_bitmap_get_width (CoglBitmap *bitmap);

Parameters

bitmap A CoglBitmap

Returns

the width of the bitmap

Since 1.10

Stability Level: Unstable

cogl_bitmap_get_height ()

int
cogl_bitmap_get_height (CoglBitmap *bitmap);

Parameters

bitmap A CoglBitmap

Returns

the height of the bitmap

Since 1.10

Stability Level: Unstable

cogl_bitmap_get_rowstride ()

int
cogl_bitmap_get_rowstride (CoglBitmap *bitmap);

Parameters

bitmap A CoglBitmap

Cogl 2.0 Reference Manual 154 / 328

Returns

the rowstride of the bitmap. This is the number of bytes between the address of start of one row to the address of the next row in
the image.

Since 1.10

Stability Level: Unstable

cogl_bitmap_get_buffer ()

CoglPixelBuffer~*
cogl_bitmap_get_buffer (CoglBitmap *bitmap);

Parameters

bitmap A CoglBitmap

Returns

the CoglPixelBuffer that this buffer uses for storage. Note that if the bitmap was created with cogl_bitmap_new_from_file() then
it will not actually be using a pixel buffer and this function will return NULL.

[transfer none]

Since 1.10

Stability Level: Unstable

cogl_bitmap_get_size_from_file ()

CoglBool
cogl_bitmap_get_size_from_file (const char *filename,

int *width,
int *height);

Parses an image file enough to extract the width and height of the bitmap.

Parameters

filename the file to check

width return location for the
bitmap width, or NULL. [out]

height return location for the
bitmap height, or NULL. [out]

Returns

TRUE if the image was successfully parsed

Since 1.0

COGL_BITMAP_ERROR

#define COGL_BITMAP_ERROR (cogl_bitmap_error_domain ())

Cogl 2.0 Reference Manual 155 / 328

CoglError domain for bitmap errors.

Since 1.4

Types and Values

CoglBitmap

typedef struct _CoglBitmap CoglBitmap;

enum CoglBitmapError

Error codes that can be thrown when performing bitmap operations. Note that gdk_pixbuf_new_from_file() can also throw errors
directly from the underlying image loading library. For example, if GdkPixbuf is used then errors GdkPixbufErrors will be used
directly.

Members

COGL_BITMAP_ERROR_FAILED

Generic
fail-
ure
code,
some-
thing
went
wrong.

COGL_BITMAP_ERROR_UNKNOWN_TYPE

Unknown
im-
age
type.

COGL_BITMAP_ERROR_CORRUPT_IMAGE

An
im-
age
file
was
bro-
ken
some-
how.

Since 1.4

1.8.2 The Texture Interface

The Texture Interface — Common interface for manipulating textures

Functions

CoglBool cogl_is_texture ()
#define COGL_TEXTURE_ERROR
CoglBool cogl_texture_allocate ()
int cogl_texture_get_width ()

Cogl 2.0 Reference Manual 156 / 328

int cogl_texture_get_height ()
CoglBool cogl_texture_is_sliced ()
int cogl_texture_get_data ()
CoglBool cogl_texture_set_data ()
CoglBool cogl_texture_set_region ()
void cogl_texture_set_components ()
CoglTextureComponents cogl_texture_get_components ()
void cogl_texture_set_premultiplied ()
CoglBool cogl_texture_get_premultiplied ()

Types and Values

typedef CoglTexture
enum CoglTextureError
enum CoglTextureType
enum CoglTextureComponents

Description

Cogl provides several different types of textures such as CoglTexture2D, CoglTexture3D, CoglTextureRectangle, CoglTex-
ture2DSliced, CoglAtlasTexture, CoglSubTexture and CoglTexturePixmapX11 that each have specific apis for creating and ma-
nipulating them, but there are a number of common operations that can be applied to any of these texture types which are handled
via this CoglTexture interface.

Functions

cogl_is_texture ()

CoglBool
cogl_is_texture (void *object);

Gets whether the given object references a texture object.

Parameters

object A CoglObject pointer

Returns

TRUE if the object references a texture, and FALSE otherwise

COGL_TEXTURE_ERROR

#define COGL_TEXTURE_ERROR (cogl_texture_error_domain ())

CoglError domain for texture errors.

Since 1.8

Stability Level: Unstable

cogl_texture_allocate ()

Cogl 2.0 Reference Manual 157 / 328

CoglBool
cogl_texture_allocate (CoglTexture *texture,

CoglError **error);

Explicitly allocates the storage for the given texture which allows you to be sure that there is enough memory for the texture
and if not then the error can be handled gracefully.

Note Normally applications don’t need to use this api directly since the texture will be implicitly allocated when data is set on
the texture, or if the texture is attached to a CoglOffscreen framebuffer and rendered too.

Parameters

texture A CoglTexture

error A CoglError to return
exceptional errors or NULL

Returns

TRUE if the texture was successfully allocated, otherwise FALSE and error will be updated if it wasn’t NULL.

cogl_texture_get_width ()

int
cogl_texture_get_width (CoglTexture *texture);

Queries the width of a cogl texture.

Parameters

texture a CoglTexture pointer.

Returns

the width of the GPU side texture in pixels

cogl_texture_get_height ()

int
cogl_texture_get_height (CoglTexture *texture);

Queries the height of a cogl texture.

Parameters

texture a CoglTexture pointer.

Returns

the height of the GPU side texture in pixels

Cogl 2.0 Reference Manual 158 / 328

cogl_texture_is_sliced ()

CoglBool
cogl_texture_is_sliced (CoglTexture *texture);

Queries if a texture is sliced (stored as multiple GPU side tecture objects).

Parameters

texture a CoglTexture pointer.

Returns

TRUE if the texture is sliced, FALSE if the texture is stored as a single GPU texture

cogl_texture_get_data ()

int
cogl_texture_get_data (CoglTexture *texture,

CoglPixelFormat format,
unsigned int rowstride,
uint8_t *data);

Copies the pixel data from a cogl texture to system memory.

Note The rowstride should be the rowstride you want for the destination data buffer you don’t need to try and calculate the
rowstride of the source texture

Parameters

texture a CoglTexture pointer.

format the CoglPixelFormat to
store the texture as.

rowstride

the rowstride of data in
bytes or pass 0 to calculate
from the bytes-per-pixel of
format multiplied by the
texture width.

data

memory location to write
the texture ’s contents, or
NULL to only query the
data size through the return
value.

Returns

the size of the texture data in bytes

cogl_texture_set_data ()

CoglBool
cogl_texture_set_data (CoglTexture *texture,

Cogl 2.0 Reference Manual 159 / 328

CoglPixelFormat format,
int rowstride,
const uint8_t *data,
int level,
CoglError **error);

Sets all the pixels for a given mipmap level by copying the pixel data pointed to by the data argument into the given texture
.

data should point to the first pixel to copy corresponding to the top left of the mipmap level being set.

If rowstride equals 0 then it will be automatically calculated from the width of the mipmap level and the bytes-per-pixel for
the given format .

A mipmap level of 0 corresponds to the largest, base image of a texture and level 1 is half the width and height of level 0. If
dividing any dimension of the previous level by two results in a fraction then round the number down (floor()), but clamp to 1
something like this:

next_width = MAX (1, floor (prev_width));

You can determine the number of mipmap levels for a given texture like this:

n_levels = 1 + floor (log2 (max_dimension));

Where max_dimension is the larger of cogl_texture_get_width() and cogl_texture_get_height().

It is an error to pass a level number >= the number of levels that texture can have according to the above calculation.

Note Since the storage for a CoglTexture is allocated lazily then if the given texture has not previously been allocated then
this api can return FALSE and throw an exceptional error if there is not enough memory to allocate storage for texture.

Parameters

format the CoglPixelFormat used
in the source data buffer.

rowstride

rowstride of the source
data buffer (computed
from the texture width and
format if it equals 0)

data the source data, pointing to
the first top-left pixel to set

level
The mipmap level to update
(Normally 0 for the largest,
base texture)

error A CoglError to return
exceptional errors

Returns

TRUE if the data upload was successful, and FALSE otherwise

cogl_texture_set_region ()

CoglBool
cogl_texture_set_region (CoglTexture *texture,

int width,

Cogl 2.0 Reference Manual 160 / 328

int height,
CoglPixelFormat format,
int rowstride,
const uint8_t *data,
int dst_x,
int dst_y,
int level,
CoglError **error);

Sets the pixels in a rectangular subregion of texture from an in-memory buffer containing pixel data .

data should point to the first pixel to copy corresponding to the top left of the region being set.

The rowstride determines how many bytes between the first pixel of a row of data and the first pixel of the next row. If
rowstride equals 0 then it will be automatically calculated from width and the bytes-per-pixel for the given format .

A mipmap level of 0 corresponds to the largest, base image of a texture and level 1 is half the width and height of level 0.
The size of any level can be calculated from the size of the base level as follows:

width = MAX (1, floor (base_width / 2 ^ level));
height = MAX (1, floor (base_height / 2 ^ level));

Or more succinctly put using C:

width = MAX (1, base_width >> level);
height = MAX (1, base_height >> level);

You can get the size of the base level using cogl_texture_get_width() and cogl_texture_get_height().

You can determine the number of mipmap levels for a given texture like this:

n_levels = 1 + floor (log2 (max_dimension));

Or more succinctly in C using the fls() - "Find Last Set" - function:

n_levels = fls (max_dimension);

Where max_dimension is the larger of cogl_texture_get_width() and cogl_texture_get_height().

It is an error to pass a level number >= the number of levels that texture can have according to the above calculation.

Note Since the storage for a CoglTexture is allocated lazily then if the given texture has not previously been allocated then
this api can return FALSE and throw an exceptional error if there is not enough memory to allocate storage for texture.

Parameters

texture a CoglTexture.
width width of the region to set.
height height of the region to set.

format the CoglPixelFormat used
in the source data buffer.

rowstride

rowstride in bytes of the
source data buffer
(computed from width and
format if it equals 0)

data the source data, pointing to
the first top-left pixel to set

dst_x upper left destination x
coordinate.

Cogl 2.0 Reference Manual 161 / 328

dst_y upper left destination y
coordinate.

level
The mipmap level to update
(Normally 0 for the largest,
base image)

error A CoglError to return
exceptional errors

Returns

TRUE if the subregion upload was successful, and FALSE otherwise

cogl_texture_set_components ()

void
cogl_texture_set_components (CoglTexture *texture,

CoglTextureComponents components);

Affects the internal storage format for this texture by specifying what components will be required for sampling later.

This api affects how data is uploaded to the GPU since unused components can potentially be discarded from source data.

For textures created by the ‘_with_size’ constructors the default is COGL_TEXTURE_COMPONENTS_RGBA. The other con-
structors which take a CoglBitmap or a data pointer default to the same components as the pixel format of the data.

Note that the COGL_TEXTURE_COMPONENTS_RG format is not available on all drivers. The availability can be determined
by checking for the COGL_FEATURE_ID_TEXTURE_RG feature. If this format is used on a driver where it is not available
then COGL_TEXTURE_ERROR_FORMAT will be raised when the texture is allocated. Even if the feature is not available then
COGL_PIXEL_FORMAT_RG_88 can still be used as an image format as long as COGL_TEXTURE_COMPONENTS_RG
isn’t used as the texture’s components.

Parameters

texture a CoglTexture pointer.

Since 1.18

cogl_texture_get_components ()

CoglTextureComponents
cogl_texture_get_components (CoglTexture *texture);

Queries what components the given texture stores internally as set via cogl_texture_set_components().

For textures created by the ‘_with_size’ constructors the default is COGL_TEXTURE_COMPONENTS_RGBA. The other con-
structors which take a CoglBitmap or a data pointer default to the same components as the pixel format of the data.

Parameters

texture a CoglTexture pointer.

Since 1.18

Cogl 2.0 Reference Manual 162 / 328

cogl_texture_set_premultiplied ()

void
cogl_texture_set_premultiplied (CoglTexture *texture,

CoglBool premultiplied);

Affects the internal storage format for this texture by specifying whether red, green and blue color components should be stored
as pre-multiplied alpha values.

This api affects how data is uploaded to the GPU since Cogl will convert source data to have premultiplied or unpremultiplied
components according to this state.

For example if you create a texture via cogl_texture_2d_new_with_size() and then upload data via cogl_texture_set_data() pass-
ing a source format of COGL_PIXEL_FORMAT_RGBA_8888 then Cogl will internally multiply the red, green and blue compo-
nents of the source data by the alpha component, for each pixel so that the internally stored data has pre-multiplied alpha compo-
nents. If you instead upload data that already has pre-multiplied components by passing COGL_PIXEL_FORMAT_RGBA_8888_PRE
as the source format to cogl_texture_set_data() then the data can be uploaded without being converted.

By default the premultipled state is TRUE .

Parameters

texture a CoglTexture pointer.

premultiplied

Whether any internally
stored red, green or blue
components are
pre-multiplied by an alpha
component.

Since 1.18

cogl_texture_get_premultiplied ()

CoglBool
cogl_texture_get_premultiplied (CoglTexture *texture);

Queries the pre-multiplied alpha status for internally stored red, green and blue components for the given texture as set by
cogl_texture_set_premultiplied().

By default the pre-multipled state is TRUE .

Parameters

texture a CoglTexture pointer.

Returns

TRUE if red, green and blue components are internally stored pre-multiplied by the alpha value or FALSE if not.

Since 1.18

Types and Values

CoglTexture

typedef void CoglTexture;

Cogl 2.0 Reference Manual 163 / 328

enum CoglTextureError

Error codes that can be thrown when allocating textures.

Members

COGL_TEXTURE_ERROR_SIZE Unsupported
size

COGL_TEXTURE_ERROR_FORMAT
Unsupported
for-
mat

COGL_TEXTURE_ERROR_BAD_PARAMETER

COGL_TEXTURE_ERROR_TYPE

A
prim-
i-
tive
tex-
ture
type
that
is
un-
sup-
ported
by
the
driver
was
used

Since 1.8

Stability Level: Unstable

enum CoglTextureType

Constants representing the underlying hardware texture type of a CoglTexture.

Members

COGL_TEXTURE_TYPE_2D

A
Cogl-
Tex-
ture2D

COGL_TEXTURE_TYPE_3D

A
Cogl-
Tex-
ture3D

COGL_TEXTURE_TYPE_RECTANGLE

A
Cogl-
Tex-
tur-
eRect-
an-
gle

Cogl 2.0 Reference Manual 164 / 328

Since 1.10

Stability Level: Unstable

enum CoglTextureComponents

See cogl_texture_set_components().

Members

COGL_TEXTURE_COMPONENTS_A

Only
the
al-
pha
com-
po-
nent

COGL_TEXTURE_COMPONENTS_RG

Red
and
green
com-
po-
nents.
Note
that
this
can
only
be
used
if
the
COGL_FEATURE_ID_TEXTURE_RG
fea-
ture
is
ad-
ver-
tised.

COGL_TEXTURE_COMPONENTS_RGB

Red,
green
and
blue
com-
po-
nents

COGL_TEXTURE_COMPONENTS_RGBA

Red,
green,
blue
and
al-
pha
com-
po-
nents

Cogl 2.0 Reference Manual 165 / 328

COGL_TEXTURE_COMPONENTS_DEPTH

Only
a
depth
com-
po-
nent

Since 1.18

1.9 Meta Textures

1.9.1 High Level Meta Textures

High Level Meta Textures — Interface for high-level textures built from low-level textures like CoglTexture2D and CoglTex-
ture3D.

Functions

void (*CoglMetaTextureCallback) ()
void cogl_meta_texture_foreach_in_region ()

Types and Values

typedef CoglMetaTexture

Description

Cogl helps to make it easy to deal with high level textures such as CoglAtlasTextures, CoglSubTextures, CoglTexturePixmapX11
textures and CoglTexture2DSliced textures consistently.

A CoglMetaTexture is a texture that might internally be represented by one or more low-level CoglTextures such as CoglTex-
ture2D or CoglTexture3D. These low-level textures are the only ones that a GPU really understands but because applications
often want more high-level texture abstractions (such as storing multiple textures inside one larger "atlas" texture) it’s desirable
to be able to deal with these using a common interface.

For example the GPU is not able to automatically handle repeating a texture that is part of a larger atlas texture but if you use
COGL_PIPELINE_WRAP_MODE_REPEAT with an atlas texture when drawing with cogl_framebuffer_draw_rectangle() you
should see that it "Just Works™" - at least if you don’t use multi-texturing. The reason this works is because cogl_framebuffer_draw_rectangle()
internally understands the CoglMetaTexture interface and is able to manually resolve the low-level textures using this interface
and by making multiple draw calls it can emulate the texture repeat modes.

Cogl doesn’t aim to pretend that meta-textures are just like real textures because it would get extremely complex to try and emu-
late low-level GPU semantics transparently for these textures. The low level drawing APIs of Cogl, such as cogl_primitive_draw()
don’t actually know anything about the CoglMetaTexture interface and its the developer’s responsibility to resolve all textures
referenced by a CoglPipeline to low-level textures before drawing.

If you want to develop custom primitive APIs like cogl_framebuffer_draw_rectangle() and you want to support drawing with
CoglAtlasTextures or CoglSubTextures for example, then you will need to use this CoglMetaTexture interface to be able to resolve
high-level textures into low-level textures before drawing with Cogl’s low-level drawing APIs such as cogl_primitive_draw().

Note Most developers won’t need to use this interface directly but still it is worth understanding the distinction between low-level
and meta textures because you may find other references in the documentation that detail limitations of using meta-textures.

Cogl 2.0 Reference Manual 166 / 328

Functions

CoglMetaTextureCallback ()

void
(*CoglMetaTextureCallback) (CoglTexture *sub_texture,

const float *sub_texture_coords,
const float *meta_coords,
void *user_data);

A callback used with cogl_meta_texture_foreach_in_region() to retrieve details of all the low-level CoglTextures that make up a
given CoglMetaTexture.

Parameters

sub_texture
A low-level CoglTexture
making up part of a
CoglMetaTexture.

sub_texture_coords

A float 4-tuple ordered like
(tx1,ty1,tx2,ty2) defining
what region of the current
sub_texture maps to a
sub-region of a
CoglMetaTexture. (tx1,ty1)
is the top-left sub-region
coordinate and (tx2,ty2) is
the bottom-right. These are
low-level texture
coordinates.

meta_coords

A float 4-tuple ordered like
(tx1,ty1,tx2,ty2) defining
what sub-region of a
CoglMetaTexture this
low-level sub_texture
maps too. (tx1,ty1) is the
top-left sub-region
coordinate and (tx2,ty2) is
the bottom-right. These are
high-level meta-texture
coordinates.

user_data A private pointer passed to
cogl_meta_texture_foreach_in_region().

Since 1.10

Stability Level: Unstable

cogl_meta_texture_foreach_in_region ()

void
cogl_meta_texture_foreach_in_region (CoglMetaTexture *meta_texture,

float tx_1,
float ty_1,
float tx_2,
float ty_2,
CoglPipelineWrapMode wrap_s,

Cogl 2.0 Reference Manual 167 / 328

CoglPipelineWrapMode wrap_t,
CoglMetaTextureCallback callback,
void *user_data);

Allows you to manually iterate the low-level textures that define a given region of a high-level CoglMetaTexture.

For example cogl_texture_2d_sliced_new_with_size() can be used to create a meta texture that may slice a large image into
multiple, smaller power-of-two sized textures. These high level textures are not directly understood by a GPU and so this API
must be used to manually resolve the underlying textures for drawing.

All high level textures (CoglAtlasTexture, CoglSubTexture, CoglTexturePixmapX11, and CoglTexture2DSliced) can be handled
consistently using this interface which greately simplifies implementing primitives that support all texture types.

For example if you use the cogl_framebuffer_draw_rectangle() API then Cogl will internally use this API to resolve the low level
textures of any meta textures you have associated with CoglPipeline layers.

Note The low level drawing APIs such as cogl_primitive_draw() don’t understand the CoglMetaTexture interface and so it is
your responsibility to use this API to resolve all CoglPipeline textures into low-level textures before drawing.

For each low-level texture that makes up part of the given region of the meta_texture , callback is called specifying how the
low-level texture maps to the original region.

Parameters

meta_texture An object implementing the
CoglMetaTexture interface.

tx_1 The top-left x coordinate of
the region to iterate

ty_1 The top-left y coordinate of
the region to iterate

tx_2
The bottom-right x
coordinate of the region to
iterate

ty_2
The bottom-right y
coordinate of the region to
iterate

wrap_s The wrap mode for the
x-axis

wrap_t The wrap mode for the
y-axis

callback

A
CoglMetaTextureCallback
pointer to be called for each
low-level texture within the
specified region.

user_data A private pointer that is
passed to callback .

Since 1.10

Stability Level: Unstable

Types and Values

CoglMetaTexture

Cogl 2.0 Reference Manual 168 / 328

typedef void CoglMetaTexture;

1.9.2 Sub Textures

Sub Textures — Functions for creating and manipulating sub-textures.

Functions

CoglSubTexture * cogl_sub_texture_new ()
CoglBool cogl_is_sub_texture ()

Types and Values

CoglSubTexture

Description

These functions allow high-level textures to be created that represent a sub-region of another texture. For example these can be
used to implement custom texture atlasing schemes.

Functions

cogl_sub_texture_new ()

CoglSubTexture~*
cogl_sub_texture_new (CoglContext *ctx,

CoglTexture *parent_texture,
int sub_x,
int sub_y,
int sub_width,
int sub_height);

Creates a high-level CoglSubTexture representing a sub-region of any other CoglTexture. The sub-region must strictly lye within
the bounds of the parent_texture . The returned texture implements the CoglMetaTexture interface because it’s not a low
level texture that hardware can understand natively.

Note Remember: Unless you are using high level drawing APIs such as cogl_framebuffer_draw_rectangle() or other APIs
documented to understand the CoglMetaTexture interface then you need to use the CoglMetaTexture interface to resolve a
CoglSubTexture into a low-level texture before drawing.

Parameters

ctx A CoglContext pointer

parent_texture

The full texture containing
a sub-region you want to
make a CoglSubTexture
from.

sub_x
The top-left x coordinate of
the parent region to make a
texture from.

Cogl 2.0 Reference Manual 169 / 328

sub_y
The top-left y coordinate of
the parent region to make a
texture from.

sub_width
The width of the parent
region to make a texture
from.

sub_height
The height of the parent
region to make a texture
from.

Returns

A newly allocated CoglSubTexture representing a sub-region of parent_texture .

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_is_sub_texture ()

CoglBool
cogl_is_sub_texture (void *object);

Checks whether object is a CoglSubTexture.

Parameters

object a CoglObject

Returns

TRUE if the passed object represents a CoglSubTexture and FALSE otherwise.

Since 1.10

Stability Level: Unstable

Types and Values

CoglSubTexture

typedef struct _CoglSubTexture CoglSubTexture;

1.9.3 Sliced Textures

Sliced Textures — Functions for creating and manipulating 2D meta textures that may internally be comprised of multiple 2D
textures with power-of-two sizes.

Functions

CoglTexture2DSliced * cogl_texture_2d_sliced_new_with_size ()

Cogl 2.0 Reference Manual 170 / 328

CoglTexture2DSliced * cogl_texture_2d_sliced_new_from_file ()
CoglTexture2DSliced * cogl_texture_2d_sliced_new_from_data ()
CoglTexture2DSliced * cogl_texture_2d_sliced_new_from_bitmap ()
CoglBool cogl_is_texture_2d_sliced ()

Types and Values

CoglTexture2DSliced

Description

These functions allow high-level meta textures (See the CoglMetaTexture interface) to be allocated that may internally be com-
prised of multiple 2D texture "slices" with power-of-two sizes.

This API can be useful when working with GPUs that don’t have native support for non-power-of-two textures or if you want to
load a texture that is larger than the GPUs maximum texture size limits.

The algorithm for slicing works by first trying to map a virtual size to the next larger power-of-two size and then seeing how
many wasted pixels that would result in. For example if you have a virtual texture that’s 259 texels wide, the next pot size =
512 and the amount of waste would be 253 texels. If the amount of waste is above a max-waste threshold then we would next
slice that texture into one that’s 256 texels and then looking at how many more texels remain unallocated after that we choose the
next power-of-two size. For the example of a 259 texel image that would mean having a 256 texel wide texture, leaving 3 texels
unallocated so we’d then create a 4 texel wide texture - now there is only one texel of waste. The algorithm continues to slice the
right most textures until the amount of waste is less than or equal to a specfied max-waste threshold. The same logic for slicing
from left to right is also applied from top to bottom.

Functions

cogl_texture_2d_sliced_new_with_size ()

CoglTexture2DSliced~*
cogl_texture_2d_sliced_new_with_size (CoglContext *ctx,

int width,
int height,
int max_waste);

Creates a CoglTexture2DSliced that may internally be comprised of 1 or more CoglTexture2D textures depending on GPU
limitations. For example if the GPU only supports power-of-two sized textures then a sliced texture will turn a non-power-of-two
size into a combination of smaller power-of-two sized textures. If the requested texture size is larger than is supported by the
hardware then the texture will be sliced into smaller textures that can be accessed by the hardware.

max_waste is used as a threshold for recursively slicing the right-most or bottom-most slices into smaller sizes until the wasted
padding at the bottom and right of the textures is less than specified. A negative max_waste will disable slicing.

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or let Cogl automatically allocate storage lazily.

Note It’s possible for the allocation of a sliced texture to fail later due to impossible slicing constraints if a negative max_waste

value is given. If the given virtual texture size size is larger than is supported by the hardware but slicing is disabled the texture
size would be too large to handle.

Parameters

ctx A CoglContext

Cogl 2.0 Reference Manual 171 / 328

width The virtual width of your
sliced texture.

height The virtual height of your
sliced texture.

max_waste

The threshold of how wide
a strip of wasted texels are
allowed along the right and
bottom textures before they
must be sliced to reduce the
amount of waste. A
negative can be passed to
disable slicing.

Returns

A new CoglTexture2DSliced object with no storage allocated yet.

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_texture_2d_sliced_new_from_file ()

CoglTexture2DSliced~*
cogl_texture_2d_sliced_new_from_file (CoglContext *ctx,

const char *filename,
int max_waste,
CoglError **error);

Creates a CoglTexture2DSliced from an image file.

A CoglTexture2DSliced may internally be comprised of 1 or more CoglTexture2D textures depending on GPU limitations. For
example if the GPU only supports power-of-two sized textures then a sliced texture will turn a non-power-of-two size into a
combination of smaller power-of-two sized textures. If the requested texture size is larger than is supported by the hardware then
the texture will be sliced into smaller textures that can be accessed by the hardware.

max_waste is used as a threshold for recursively slicing the right-most or bottom-most slices into smaller sizes until the wasted
padding at the bottom and right of the textures is less than specified. A negative max_waste will disable slicing.

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or let Cogl automatically allocate storage lazily.

Note It’s possible for the allocation of a sliced texture to fail later due to impossible slicing constraints if a negative max_waste

value is given. If the given virtual texture size is larger than is supported by the hardware but slicing is disabled the texture size
would be too large to handle.

Parameters

ctx A CoglContext
filename the file to load

max_waste

The threshold of how wide
a strip of wasted texels are
allowed along the right and
bottom textures before they
must be sliced to reduce the
amount of waste. A
negative can be passed to
disable slicing.

Cogl 2.0 Reference Manual 172 / 328

error A CoglError to catch
exceptional errors or NULL

Returns

A newly created CoglTexture2DSliced or NULL on failure and error will be updated.

[transfer full]

Since 1.16

cogl_texture_2d_sliced_new_from_data ()

CoglTexture2DSliced~*
cogl_texture_2d_sliced_new_from_data (CoglContext *ctx,

int width,
int height,
int max_waste,
CoglPixelFormat format,
int rowstride,
const uint8_t *data,
CoglError **error);

Creates a new CoglTexture2DSliced texture based on data residing in memory.

A CoglTexture2DSliced may internally be comprised of 1 or more CoglTexture2D textures depending on GPU limitations. For
example if the GPU only supports power-of-two sized textures then a sliced texture will turn a non-power-of-two size into a
combination of smaller power-of-two sized textures. If the requested texture size is larger than is supported by the hardware then
the texture will be sliced into smaller textures that can be accessed by the hardware.

max_waste is used as a threshold for recursively slicing the right-most or bottom-most slices into smaller sizes until the wasted
padding at the bottom and right of the textures is less than specified. A negative max_waste will disable slicing.

Note This api will always immediately allocate GPU memory for all the required texture slices and upload the given data so that
the data pointer does not need to remain valid once this function returns. This means it is not possible to configure the texture
before it is allocated. If you do need to configure the texture before allocation (to specify constraints on the internal format for
example) then you can instead create a CoglBitmap for your data and use cogl_texture_2d_sliced_new_from_bitmap() or use
cogl_texture_2d_sliced_new_with_size() and then upload data using cogl_texture_set_data()

Note It’s possible for the allocation of a sliced texture to fail due to impossible slicing constraints if a negative max_waste value
is given. If the given virtual texture size is larger than is supported by the hardware but slicing is disabled the texture size would
be too large to handle.

Parameters

ctx A CoglContext
width width of texture in pixels
height height of texture in pixels

format the CoglPixelFormat the
buffer is stored in in RAM

Cogl 2.0 Reference Manual 173 / 328

max_waste

The threshold of how wide
a strip of wasted texels are
allowed along the right and
bottom textures before they
must be sliced to reduce the
amount of waste. A
negative can be passed to
disable slicing.

rowstride

the memory offset in bytes
between the start of each
row in data . A value of 0
will make Cogl
automatically calculate
rowstride from width

and format .

data
pointer the memory region
where the source buffer
resides

error A CoglError to catch
exceptional errors or NULL

Returns

A newly created CoglTexture2DSliced or NULL on failure and error will be updated.

[transfer full]

Since 1.16

cogl_texture_2d_sliced_new_from_bitmap ()

CoglTexture2DSliced~*
cogl_texture_2d_sliced_new_from_bitmap

(CoglBitmap *bmp,
int max_waste);

Creates a new CoglTexture2DSliced texture based on data residing in a bitmap.

A CoglTexture2DSliced may internally be comprised of 1 or more CoglTexture2D textures depending on GPU limitations. For
example if the GPU only supports power-of-two sized textures then a sliced texture will turn a non-power-of-two size into a
combination of smaller power-of-two sized textures. If the requested texture size is larger than is supported by the hardware then
the texture will be sliced into smaller textures that can be accessed by the hardware.

max_waste is used as a threshold for recursively slicing the right-most or bottom-most slices into smaller sizes until the wasted
padding at the bottom and right of the textures is less than specified. A negative max_waste will disable slicing.

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or let Cogl automatically allocate storage lazily.

Note It’s possible for the allocation of a sliced texture to fail later due to impossible slicing constraints if a negative max_waste

value is given. If the given virtual texture size is larger than is supported by the hardware but slicing is disabled the texture size
would be too large to handle.

Parameters

bmp A CoglBitmap

Cogl 2.0 Reference Manual 174 / 328

max_waste

The threshold of how wide
a strip of wasted texels are
allowed along the right and
bottom textures before they
must be sliced to reduce the
amount of waste. A
negative can be passed to
disable slicing.

Returns

A newly created CoglTexture2DSliced or NULL on failure and error will be updated.

[transfer full]

Since 1.16

cogl_is_texture_2d_sliced ()

CoglBool
cogl_is_texture_2d_sliced (void *object);

Gets whether the given object references a CoglTexture2DSliced.

Parameters

object A CoglObject pointer

Returns

TRUE if the object references a CoglTexture2DSliced and FALSE otherwise.

Since 1.10

Stability Level: Unstable

Types and Values

CoglTexture2DSliced

typedef struct _CoglTexture2DSliced CoglTexture2DSliced;

1.9.4 X11 Texture From Pixmap

X11 Texture From Pixmap — Functions for creating and manipulating 2D meta textures derived from X11 pixmaps.

Functions

CoglBool cogl_is_texture_pixmap_x11 ()
CoglTexturePixmapX11 * cogl_texture_pixmap_x11_new ()
void cogl_texture_pixmap_x11_update_area ()
CoglBool cogl_texture_pixmap_x11_is_using_tfp_extension ()
void cogl_texture_pixmap_x11_set_damage_object ()

Cogl 2.0 Reference Manual 175 / 328

Types and Values

CoglTexturePixmapX11
enum CoglTexturePixmapX11ReportLevel

Description

These functions allow high-level meta textures (See the CoglMetaTexture interface) that derive their contents from an X11
pixmap.

Functions

cogl_is_texture_pixmap_x11 ()

CoglBool
cogl_is_texture_pixmap_x11 (void *object);

Checks whether object points to a CoglTexturePixmapX11 instance.

Parameters

object A pointer to a CoglObject

Returns

TRUE if the object is a CoglTexturePixmapX11, and FALSE otherwise

Since 1.4

Stability Level: Unstable

cogl_texture_pixmap_x11_new ()

CoglTexturePixmapX11~*
cogl_texture_pixmap_x11_new (CoglContext *context,

uint32_t pixmap,
CoglBool automatic_updates,
CoglError **error);

Creates a texture that contains the contents of pixmap . If automatic_updates is TRUE then Cogl will attempt to listen for
damage events on the pixmap and automatically update the texture when it changes.

Parameters

context A CoglContext
pixmap A X11 pixmap ID

automatic_updates
Whether to automatically
copy the contents of the
pixmap to the texture.

error A CoglError for exceptions

Cogl 2.0 Reference Manual 176 / 328

Returns

a new CoglTexturePixmapX11 instance

Since 1.10

Stability Level: Unstable

cogl_texture_pixmap_x11_update_area ()

void
cogl_texture_pixmap_x11_update_area (CoglTexturePixmapX11 *texture,

int x,
int y,
int width,
int height);

Forces an update of the given texture so that it is refreshed with the contents of the pixmap that was given to cogl_texture_pixmap_x11_new().

Parameters

texture A CoglTexturePixmapX11
instance

x x coordinate of the area to
update

y y coordinate of the area to
update

width width of the area to update
height height of the area to update

Since 1.4

Stability Level: Unstable

cogl_texture_pixmap_x11_is_using_tfp_extension ()

CoglBool
cogl_texture_pixmap_x11_is_using_tfp_extension

(CoglTexturePixmapX11 *texture);

Checks whether the given texture is using the GLX_EXT_texture_from_pixmap or similar extension to copy the contents of
the pixmap to the texture. This extension is usually implemented as zero-copy operation so it implies the updates are working
efficiently.

Parameters

texture A CoglTexturePixmapX11
instance

Returns

TRUE if the texture is using an efficient extension and FALSE otherwise

Since 1.4

Stability Level: Unstable

Cogl 2.0 Reference Manual 177 / 328

cogl_texture_pixmap_x11_set_damage_object ()

void
cogl_texture_pixmap_x11_set_damage_object

(CoglTexturePixmapX11 *texture,
uint32_t damage,
CoglTexturePixmapX11ReportLevel report_level);

Sets the damage object that will be used to track automatic updates to the texture . Damage tracking can be disabled
by passing 0 for damage . Otherwise this damage will replace the one used if TRUE was passed for automatic_updates to
cogl_texture_pixmap_x11_new().

Note that Cogl will subtract from the damage region as it processes damage events.

Parameters

texture A CoglTexturePixmapX11
instance

damage A X11 Damage object or 0

report_level

The report level which
describes how to interpret
the damage events. This
should match the level that
the damage object was
created with.

Since 1.4

Stability Level: Unstable

Types and Values

CoglTexturePixmapX11

typedef struct _CoglTexturePixmapX11 CoglTexturePixmapX11;

enum CoglTexturePixmapX11ReportLevel

Members

COGL_TEXTURE_PIXMAP_X11_DAMAGE_RAW_RECTANGLES
COGL_TEXTURE_PIXMAP_X11_DAMAGE_DELTA_RECTANGLES
COGL_TEXTURE_PIXMAP_X11_DAMAGE_BOUNDING_BOX
COGL_TEXTURE_PIXMAP_X11_DAMAGE_NON_EMPTY

1.10 Primitive Textures

1.10.1 Low-level primitive textures

Low-level primitive textures — Interface for low-level textures like CoglTexture2D and CoglTexture3D.

Functions

Cogl 2.0 Reference Manual 178 / 328

CoglBool cogl_is_primitive_texture ()
void cogl_primitive_texture_set_auto_mipmap ()

Types and Values

typedef CoglPrimitiveTexture

Description

A CoglPrimitiveTexture is a texture that is directly represented by a single texture on the GPU. For example these could be a
CoglTexture2D, CoglTexture3D or CoglTextureRectangle. This is opposed to high level meta textures which may be composed
of multiple primitive textures or a sub-region of another texture such as CoglAtlasTexture and CoglTexture2DSliced.

A texture that implements this interface can be directly used with the low level cogl_primitive_draw() API. Other types of textures
need to be first resolved to primitive textures using the CoglMetaTexture interface.

Note Most developers won’t need to use this interface directly but still it is worth understanding the distinction between high-
level and primitive textures because you may find other references in the documentation that detail limitations of using primitive
textures.

Functions

cogl_is_primitive_texture ()

CoglBool
cogl_is_primitive_texture (void *object);

Gets whether the given object references a primitive texture object.

Parameters

object A CoglObject pointer

Returns

TRUE if the pointer references a primitive texture, and FALSE otherwise

Since 2.0

Stability Level: Unstable

cogl_primitive_texture_set_auto_mipmap ()

void
cogl_primitive_texture_set_auto_mipmap

(CoglPrimitiveTexture *primitive_texture,
CoglBool value);

Sets whether the texture will automatically update the smaller mipmap levels after any part of level 0 is updated. The update will
only occur whenever the texture is used for drawing with a texture filter that requires the lower mipmap levels. An application
should disable this if it wants to upload its own data for the other levels. By default auto mipmapping is enabled.

Cogl 2.0 Reference Manual 179 / 328

Parameters

Cogl 2.0 Reference Manual 180 / 328

primitive_texture A CoglPrimitiveTexture

value The new value for whether
to auto mipmap

Since 2.0

Stability Level: Unstable

Types and Values

CoglPrimitiveTexture

typedef void CoglPrimitiveTexture;

1.10.2 2D textures

2D textures — Functions for creating and manipulating 2D textures

Functions

CoglBool cogl_is_texture_2d ()
CoglTexture2D * cogl_texture_2d_new_with_size ()
CoglTexture2D * cogl_texture_2d_new_from_file ()
CoglTexture2D * cogl_texture_2d_new_from_bitmap ()
CoglTexture2D * cogl_texture_2d_new_from_data ()
CoglTexture2D * cogl_texture_2d_gl_new_from_foreign ()

Types and Values

CoglTexture2D

Description

These functions allow low-level 2D textures to be allocated. These differ from sliced textures for example which may internally
be made up of multiple 2D textures, or atlas textures where Cogl must internally modify user texture coordinates before they can
be used by the GPU.

You should be aware that many GPUs only support power of two sizes for CoglTexture2D textures. You can check support for
non power of two textures by checking for the COGL_FEATURE_ID_TEXTURE_NPOT feature via cogl_has_feature().

Functions

cogl_is_texture_2d ()

CoglBool
cogl_is_texture_2d (void *object);

Gets whether the given object references an existing CoglTexture2D object.

Parameters

Cogl 2.0 Reference Manual 181 / 328

object A CoglObject

Returns

TRUE if the object references a CoglTexture2D, FALSE otherwise

cogl_texture_2d_new_with_size ()

CoglTexture2D~*
cogl_texture_2d_new_with_size (CoglContext *ctx,

int width,
int height);

Creates a low-level CoglTexture2D texture with a given width and height that your GPU can texture from directly.

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or preferably let Cogl automatically allocate storage lazily when it may know more about how the texture
is being used and can optimize how it is allocated.

The texture is still configurable until it has been allocated so for example you can influence the internal format of the texture
using cogl_texture_set_components() and cogl_texture_set_premultiplied().

Note Many GPUs only support power of two sizes for CoglTexture2D textures. You can check support for non power of two
textures by checking for the COGL_FEATURE_ID_TEXTURE_NPOT feature via cogl_has_feature().

Parameters

ctx A CoglContext

width Width of the texture to
allocate

height Height of the texture to
allocate

Returns

A new CoglTexture2D object with no storage yet allocated.

[transfer full]

Since 2.0

cogl_texture_2d_new_from_file ()

CoglTexture2D~*
cogl_texture_2d_new_from_file (CoglContext *ctx,

const char *filename,
CoglError **error);

Creates a low-level CoglTexture2D texture from an image file.

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or preferably let Cogl automatically allocate storage lazily when it may know more about how the texture
is being used and can optimize how it is allocated.

The texture is still configurable until it has been allocated so for example you can influence the internal format of the texture
using cogl_texture_set_components() and cogl_texture_set_premultiplied().

Cogl 2.0 Reference Manual 182 / 328

Note Many GPUs only support power of two sizes for CoglTexture2D textures. You can check support for non power of two
textures by checking for the COGL_FEATURE_ID_TEXTURE_NPOT feature via cogl_has_feature().

Parameters

ctx A CoglContext
filename the file to load

error A CoglError to catch
exceptional errors or NULL

Returns

A newly created CoglTexture2D or NULL on failure and error will be updated.

[transfer full]

Since 1.16

cogl_texture_2d_new_from_bitmap ()

CoglTexture2D~*
cogl_texture_2d_new_from_bitmap (CoglBitmap *bitmap);

Creates a low-level CoglTexture2D texture based on data residing in a CoglBitmap.

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or preferably let Cogl automatically allocate storage lazily when it may know more about how the texture
is being used and can optimize how it is allocated.

The texture is still configurable until it has been allocated so for example you can influence the internal format of the texture
using cogl_texture_set_components() and cogl_texture_set_premultiplied().

Note Many GPUs only support power of two sizes for CoglTexture2D textures. You can check support for non power of two
textures by checking for the COGL_FEATURE_ID_TEXTURE_NPOT feature via cogl_has_feature().

Parameters

bitmap A CoglBitmap

Returns

A newly allocated CoglTexture2D.

[transfer full]

Since 2.0

Stability Level: Unstable

cogl_texture_2d_new_from_data ()

CoglTexture2D~*
cogl_texture_2d_new_from_data (CoglContext *ctx,

int width,

Cogl 2.0 Reference Manual 183 / 328

int height,
CoglPixelFormat format,
int rowstride,
const uint8_t *data,
CoglError **error);

Creates a low-level CoglTexture2D texture based on data residing in memory.

Note This api will always immediately allocate GPU memory for the texture and upload the given data so that the data

pointer does not need to remain valid once this function returns. This means it is not possible to configure the texture be-
fore it is allocated. If you do need to configure the texture before allocation (to specify constraints on the internal format
for example) then you can instead create a CoglBitmap for your data and use cogl_texture_2d_new_from_bitmap() or use
cogl_texture_2d_new_with_size() and then upload data using cogl_texture_set_data()

Note Many GPUs only support power of two sizes for CoglTexture2D textures. You can check support for non power of two
textures by checking for the COGL_FEATURE_ID_TEXTURE_NPOT feature via cogl_has_feature().

Parameters

ctx A CoglContext
width width of texture in pixels
height height of texture in pixels

format the CoglPixelFormat the
buffer is stored in in RAM

rowstride

the memory offset in bytes
between the starts of
scanlines in data . A value
of 0 will make Cogl
automatically calculate
rowstride from width

and format .

data
pointer the memory region
where the source buffer
resides

error A CoglError for exceptions

Returns

A newly allocated CoglTexture2D, or if the size is not supported (because it is too large or a non-power-of-two size that the
hardware doesn’t support) it will return NULL and set error .

[transfer full]

Since 2.0

cogl_texture_2d_gl_new_from_foreign ()

CoglTexture2D~*
cogl_texture_2d_gl_new_from_foreign (CoglContext *ctx,

unsigned int gl_handle,
int width,
int height,
CoglPixelFormat format);

Cogl 2.0 Reference Manual 184 / 328

Wraps an existing GL_TEXTURE_2D texture object as a CoglTexture2D. This can be used for integrating Cogl with software
using OpenGL directly.

The texture is still configurable until it has been allocated so for example you can declare whether the texture is premultiplied
with cogl_texture_set_premultiplied().

Note The results are undefined for passing an invalid gl_handle or if width or height don’t have the correct texture
geometry.

Parameters

ctx A CoglContext

gl_handle
A GL handle for a
GL_TEXTURE_2D texture
object

width Width of the foreign GL
texture

height Height of the foreign GL
texture

format The format of the texture

Returns

A newly allocated CoglTexture2D.

[transfer full]

Since 2.0

Types and Values

CoglTexture2D

typedef struct _CoglTexture2D CoglTexture2D;

1.10.3 3D textures

3D textures — Functions for creating and manipulating 3D textures

Functions

CoglTexture3D * cogl_texture_3d_new_with_size ()
CoglTexture3D * cogl_texture_3d_new_from_bitmap ()
CoglTexture3D * cogl_texture_3d_new_from_data ()
CoglBool cogl_is_texture_3d ()

Types and Values

CoglTexture3D

Cogl 2.0 Reference Manual 185 / 328

Description

These functions allow 3D textures to be used. 3D textures can be thought of as layers of 2D images arranged into a cuboid shape.
When choosing a texel from the texture, Cogl will take into account the ’r’ texture coordinate to select one of the images.

Functions

cogl_texture_3d_new_with_size ()

CoglTexture3D~*
cogl_texture_3d_new_with_size (CoglContext *context,

int width,
int height,
int depth);

Creates a low-level CoglTexture3D texture with the specified dimensions and pixel format.

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or preferably let Cogl automatically allocate storage lazily when it may know more about how the texture
is going to be used and can optimize how it is allocated.

The texture is still configurable until it has been allocated so for example you can influence the internal format of the texture
using cogl_texture_set_components() and cogl_texture_set_premultiplied().

Note This texture will fail to allocate later if COGL_FEATURE_ID_TEXTURE_3D is not advertised. Allocation can also fail if the
requested dimensions are not supported by the GPU.

Parameters

context a CoglContext

width width of the texture in
pixels.

height height of the texture in
pixels.

depth depth of the texture in
pixels.

Returns

A new CoglTexture3D object with no storage yet allocated.

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_texture_3d_new_from_bitmap ()

CoglTexture3D~*
cogl_texture_3d_new_from_bitmap (CoglBitmap *bitmap,

int height,
int depth);

Creates a low-level 3D texture and initializes it with the images in bitmap . The images are assumed to be packed together after
one another in the increasing y axis. The height of individual image is given as height and the number of images is given in

Cogl 2.0 Reference Manual 186 / 328

depth . The actual height of the bitmap can be larger than height × depth . In this case it assumes there is padding between
the images.

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or preferably let Cogl automatically allocate storage lazily when it may know more about how the texture
is going to be used and can optimize how it is allocated.

The texture is still configurable until it has been allocated so for example you can influence the internal format of the texture
using cogl_texture_set_components() and cogl_texture_set_premultiplied().

Note This texture will fail to allocate later if COGL_FEATURE_ID_TEXTURE_3D is not advertised. Allocation can also fail if the
requested dimensions are not supported by the GPU.

Parameters

bitmap A CoglBitmap object.

height height of the texture in
pixels.

depth depth of the texture in
pixels.

Returns

a newly created CoglTexture3D.

[transfer full]

Since 2.0

Stability Level: Unstable

cogl_texture_3d_new_from_data ()

CoglTexture3D~*
cogl_texture_3d_new_from_data (CoglContext *context,

int width,
int height,
int depth,
CoglPixelFormat format,
int rowstride,
int image_stride,
const uint8_t *data,
CoglError **error);

Creates a low-level 3D texture and initializes it with data . The data is assumed to be packed array of depth images. There can
be padding between the images using image_stride .

Note This api will always immediately allocate GPU memory for the texture and upload the given data so that the data pointer
does not need to remain valid once this function returns. This means it is not possible to configure the texture before it is
allocated. If you do need to configure the texture before allocation (to specify constraints on the internal format for example)
then you can instead create a CoglBitmap for your data and use cogl_texture_3d_new_from_bitmap().

Parameters

Cogl 2.0 Reference Manual 187 / 328

context a CoglContext

width width of the texture in
pixels.

height height of the texture in
pixels.

depth depth of the texture in
pixels.

format the CoglPixelFormat the
buffer is stored in in RAM

rowstride

the memory offset in bytes
between the starts of
scanlines in data or 0 to
infer it from the width and
format

image_stride

the number of bytes from
one image to the next. This
can be used to add padding
between the images in a
similar way that the
rowstride can be used to
add padding between rows.
Alternatively 0 can be
passed to infer the
image_stride from the
height .

data
pointer the memory region
where the source buffer
resides

error A CoglError return
location.

Returns

the newly created CoglTexture3D or NULL if there was an error and an exception will be returned through error .

[transfer full]

Since 1.10

Stability Level: Unstable

cogl_is_texture_3d ()

CoglBool
cogl_is_texture_3d (void *object);

Checks whether the given object references a CoglTexture3D

Parameters

object a CoglObject

Returns

TRUE if the passed object represents a 3D texture and FALSE otherwise

Since 1.4

Cogl 2.0 Reference Manual 188 / 328

Stability Level: Unstable

Types and Values

CoglTexture3D

typedef struct _CoglTexture3D CoglTexture3D;

1.10.4 Rectangle textures (non-normalized coordinates)

Rectangle textures (non-normalized coordinates) — Functions for creating and manipulating rectangle textures for use with
non-normalized coordinates.

Functions

CoglTextureRectangle * cogl_texture_rectangle_new_with_size ()
CoglTextureRectangle * cogl_texture_rectangle_new_from_bitmap ()
CoglBool cogl_is_texture_rectangle ()

Types and Values

CoglTextureRectangle

Description

These functions allow low-level "rectangle" textures to be allocated. These textures are never constrained to power-of-two sizes
but they also don’t support having a mipmap and can only be wrapped with COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE.

The most notable difference between rectangle textures and 2D textures is that rectangle textures are sampled using un-normalized
texture coordinates, so instead of using coordinates (0,0) and (1,1) to map to the top-left and bottom right corners of the texture
you would instead use (0,0) and (width,height).

The use of non-normalized coordinates can be particularly convenient when writing glsl shaders that use a texture as a lookup
table since you don’t need to upload separate uniforms to map normalized coordinates to texels.

If you want to sample from a rectangle texture from GLSL you should use the sampler2DRect sampler type.

Applications wanting to use CoglTextureRectangle should first check for the COGL_FEATURE_ID_TEXTURE_RECTANGLE
feature using cogl_has_feature().

Functions

cogl_texture_rectangle_new_with_size ()

CoglTextureRectangle~*
cogl_texture_rectangle_new_with_size (CoglContext *ctx,

int width,
int height);

Creates a new CoglTextureRectangle texture with a given width , and height . This texture is a low-level texture that the GPU
can sample from directly unlike high-level textures such as CoglTexture2DSliced and CoglAtlasTexture.

Cogl 2.0 Reference Manual 189 / 328

Note Unlike for CoglTexture2D textures, coordinates for CoglTextureRectangle textures should not be normalized. So instead
of using the coordinate (1, 1) to sample the bottom right corner of a rectangle texture you would use (width, height) where
width and height are the width and height of the texture.

Note If you want to sample from a rectangle texture from GLSL you should use the sampler2DRect sampler type.

Note Applications wanting to use CoglTextureRectangle should first check for the
COGL_FEATURE_ID_TEXTURE_RECTANGLE feature using cogl_has_feature().

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or preferably let Cogl automatically allocate storage lazily when it may know more about how the texture
is going to be used and can optimize how it is allocated.

Parameters

ctx A CoglContext pointer

width The texture width to
allocate

height The texture height to
allocate

Returns

A pointer to a new CoglTextureRectangle object with no storage allocated yet.

Since 1.10

Stability Level: Unstable

cogl_texture_rectangle_new_from_bitmap ()

CoglTextureRectangle~*
cogl_texture_rectangle_new_from_bitmap

(CoglBitmap *bitmap);

Allocates a new CoglTextureRectangle texture which will be initialized with the pixel data from bitmap . This texture is a
low-level texture that the GPU can sample from directly unlike high-level textures such as CoglTexture2DSliced and CoglAtlas-
Texture.

Note Unlike for CoglTexture2D textures, coordinates for CoglTextureRectangle textures should not be normalized. So instead
of using the coordinate (1, 1) to sample the bottom right corner of a rectangle texture you would use (width, height) where
width and height are the width and height of the texture.

Note If you want to sample from a rectangle texture from GLSL you should use the sampler2DRect sampler type.

Note Applications wanting to use CoglTextureRectangle should first check for the
COGL_FEATURE_ID_TEXTURE_RECTANGLE feature using cogl_has_feature().

Cogl 2.0 Reference Manual 190 / 328

The storage for the texture is not allocated before this function returns. You can call cogl_texture_allocate() to explicitly allocate
the underlying storage or preferably let Cogl automatically allocate storage lazily when it may know more about how the texture
is going to be used and can optimize how it is allocated.

Parameters

bitmap A CoglBitmap

Returns

A pointer to a new CoglTextureRectangle texture.

Since 2.0

Stability Level: Unstable

cogl_is_texture_rectangle ()

CoglBool
cogl_is_texture_rectangle (void *object);

Gets whether the given object references an existing CoglTextureRectangle object.

Parameters

object A CoglObject

Returns

TRUE if the object references a CoglTextureRectangle, FALSE otherwise.

Types and Values

CoglTextureRectangle

typedef struct _CoglTextureRectangle CoglTextureRectangle;

1.11 Framebuffers

1.11.1 CoglFramebuffer: The Framebuffer Interface

CoglFramebuffer: The Framebuffer Interface — A common interface for manipulating framebuffers

Functions

#define COGL_FRAMEBUFFER()
CoglBool cogl_framebuffer_allocate ()
int cogl_framebuffer_get_width ()
int cogl_framebuffer_get_height ()
void cogl_framebuffer_set_viewport ()

Cogl 2.0 Reference Manual 191 / 328

float cogl_framebuffer_get_viewport_x ()
float cogl_framebuffer_get_viewport_y ()
float cogl_framebuffer_get_viewport_width ()
float cogl_framebuffer_get_viewport_height ()
void cogl_framebuffer_get_viewport4fv ()
int cogl_framebuffer_get_red_bits ()
int cogl_framebuffer_get_green_bits ()
int cogl_framebuffer_get_blue_bits ()
int cogl_framebuffer_get_alpha_bits ()
int cogl_framebuffer_get_depth_bits ()
CoglColorMask cogl_framebuffer_get_color_mask ()
void cogl_framebuffer_set_color_mask ()
int cogl_framebuffer_get_samples_per_pixel ()
void cogl_framebuffer_set_samples_per_pixel ()
void cogl_framebuffer_resolve_samples ()
void cogl_framebuffer_resolve_samples_region ()
CoglContext * cogl_framebuffer_get_context ()
void cogl_framebuffer_clear ()
void cogl_framebuffer_clear4f ()
CoglBool cogl_framebuffer_read_pixels_into_bitmap ()
CoglBool cogl_framebuffer_read_pixels ()
void cogl_framebuffer_set_dither_enabled ()
CoglBool cogl_framebuffer_get_dither_enabled ()
void cogl_framebuffer_draw_rectangle ()
void cogl_framebuffer_draw_textured_rectangle ()
void cogl_framebuffer_draw_multitextured_rectangle ()
void cogl_framebuffer_draw_rectangles ()
void cogl_framebuffer_draw_textured_rectangles ()
void cogl_framebuffer_discard_buffers ()
void cogl_framebuffer_finish ()
void cogl_framebuffer_push_matrix ()
void cogl_framebuffer_pop_matrix ()
void cogl_framebuffer_identity_matrix ()
void cogl_framebuffer_scale ()
void cogl_framebuffer_translate ()
void cogl_framebuffer_rotate ()
void cogl_framebuffer_rotate_euler ()
void cogl_framebuffer_rotate_quaternion ()
void cogl_framebuffer_transform ()
void cogl_framebuffer_get_modelview_matrix ()
void cogl_framebuffer_set_modelview_matrix ()
void cogl_framebuffer_perspective ()
void cogl_framebuffer_frustum ()
void cogl_framebuffer_orthographic ()
void cogl_framebuffer_get_projection_matrix ()
void cogl_framebuffer_set_projection_matrix ()
void cogl_framebuffer_push_scissor_clip ()
void cogl_framebuffer_push_rectangle_clip ()
void cogl_framebuffer_push_primitive_clip ()
void cogl_framebuffer_pop_clip ()

Types and Values

typedef CoglFramebuffer

Cogl 2.0 Reference Manual 192 / 328

Description

Framebuffers are a collection of buffers that can be rendered too. A framebuffer may be comprised of one or more color buffers,
an optional depth buffer and an optional stencil buffer. Other configuration parameters are associated with framebuffers too such
as whether the framebuffer supports multi-sampling (an anti-aliasing technique) or dithering.

There are two kinds of framebuffer in Cogl, CoglOnscreen framebuffers and CoglOffscreen framebuffers. As the names imply
offscreen framebuffers are for rendering something offscreen (perhaps to a texture which is bound as one of the color buffers).
The exact semantics of onscreen framebuffers depends on the window system backend that you are using, but typically you can
expect rendering to a CoglOnscreen framebuffer will be immediately visible to the user.

If you want to create a new framebuffer then you should start by looking at the CoglOnscreen and CoglOffscreen constructor
functions, such as cogl_offscreen_new_with_texture() or cogl_onscreen_new(). The CoglFramebuffer interface deals with all
aspects that are common between those two types of framebuffer.

Setup of a new CoglFramebuffer happens in two stages. There is a configuration stage where you specify all the options and
ancillary buffers you want associated with your framebuffer and then when you are happy with the configuration you can "al-
locate" the framebuffer using cogl_framebuffer_allocate(). Technically explicitly calling cogl_framebuffer_allocate() is optional
for convenience and the framebuffer will automatically be allocated when you first try to draw to it, but if you do the allocation
manually then you can also catch any possible errors that may arise from your configuration.

Functions

COGL_FRAMEBUFFER()

#define COGL_FRAMEBUFFER(X) ((CoglFramebuffer *)(X))

cogl_framebuffer_allocate ()

CoglBool
cogl_framebuffer_allocate (CoglFramebuffer *framebuffer,

CoglError **error);

Explicitly allocates a configured CoglFramebuffer allowing developers to check and handle any errors that might arise from an
unsupported configuration so that fallback configurations may be tried.

Note Many applications don’t support any fallback options at least when they are initially developed and in that case the don’t
need to use this API since Cogl will automatically allocate a framebuffer when it first gets used. The disadvantage of relying on
automatic allocation is that the program will abort with an error message if there is an error during automatic allocation.

Parameters

framebuffer A CoglFramebuffer

error A pointer to a CoglError for
returning exceptions.

Returns

TRUE if there were no error allocating the framebuffer, else FALSE.

Since 1.8

Stability Level: Unstable

Cogl 2.0 Reference Manual 193 / 328

cogl_framebuffer_get_width ()

int
cogl_framebuffer_get_width (CoglFramebuffer *framebuffer);

Queries the current width of the given framebuffer .

Parameters

framebuffer A CoglFramebuffer

Returns

The width of framebuffer .

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_height ()

int
cogl_framebuffer_get_height (CoglFramebuffer *framebuffer);

Queries the current height of the given framebuffer .

Parameters

framebuffer A CoglFramebuffer

Returns

The height of framebuffer .

Since 1.8

Stability Level: Unstable

cogl_framebuffer_set_viewport ()

void
cogl_framebuffer_set_viewport (CoglFramebuffer *framebuffer,

float x,
float y,
float width,
float height);

Defines a scale and offset for everything rendered relative to the top-left of the destination framebuffer.

By default the viewport has an origin of (0,0) and width and height that match the framebuffer’s size. Assuming a default
projection and modelview matrix then you could translate the contents of a window down and right by leaving the viewport size
unchanged by moving the offset to (10,10). The viewport coordinates are measured in pixels. If you left the x and y origin as
(0,0) you could scale the windows contents down by specify and width and height that’s half the real size of the framebuffer.

Note Although the function takes floating point arguments, existing drivers only allow the use of integer values. In the future
floating point values will be exposed via a checkable feature.

Cogl 2.0 Reference Manual 194 / 328

Parameters

framebuffer A CoglFramebuffer

x

The top-left x coordinate of
the viewport origin (only
integers supported
currently)

y

The top-left y coordinate of
the viewport origin (only
integers supported
currently)

width
The width of the viewport
(only integers supported
currently)

height
The height of the viewport
(only integers supported
currently)

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_viewport_x ()

float
cogl_framebuffer_get_viewport_x (CoglFramebuffer *framebuffer);

Queries the x coordinate of the viewport origin as set using cogl_framebuffer_set_viewport() or the default value which is 0.

Parameters

framebuffer A CoglFramebuffer

Returns

The x coordinate of the viewport origin.

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_viewport_y ()

float
cogl_framebuffer_get_viewport_y (CoglFramebuffer *framebuffer);

Queries the y coordinate of the viewport origin as set using cogl_framebuffer_set_viewport() or the default value which is 0.

Parameters

framebuffer A CoglFramebuffer

Cogl 2.0 Reference Manual 195 / 328

Returns

The y coordinate of the viewport origin.

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_viewport_width ()

float
cogl_framebuffer_get_viewport_width (CoglFramebuffer *framebuffer);

Queries the width of the viewport as set using cogl_framebuffer_set_viewport() or the default value which is the width of the
framebuffer.

Parameters

framebuffer A CoglFramebuffer

Returns

The width of the viewport.

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_viewport_height ()

float
cogl_framebuffer_get_viewport_height (CoglFramebuffer *framebuffer);

Queries the height of the viewport as set using cogl_framebuffer_set_viewport() or the default value which is the height of the
framebuffer.

Parameters

framebuffer A CoglFramebuffer

Returns

The height of the viewport.

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_viewport4fv ()

void
cogl_framebuffer_get_viewport4fv (CoglFramebuffer *framebuffer,

float *viewport);

Queries the x, y, width and height components of the current viewport as set using cogl_framebuffer_set_viewport() or the default
values which are 0, 0, framebuffer_width and framebuffer_height. The values are written into the given viewport array.

Cogl 2.0 Reference Manual 196 / 328

Parameters

framebuffer A CoglFramebuffer

viewport

A pointer to an array of 4
floats to receive the (x, y,
width, height) components
of the current viewport.

[out caller-allocates][array fixed-size=4]

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_red_bits ()

int
cogl_framebuffer_get_red_bits (CoglFramebuffer *framebuffer);

Retrieves the number of red bits of framebuffer

Parameters

framebuffer a pointer to a
CoglFramebuffer

Returns

the number of bits

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_green_bits ()

int
cogl_framebuffer_get_green_bits (CoglFramebuffer *framebuffer);

Retrieves the number of green bits of framebuffer

Parameters

framebuffer a pointer to a
CoglFramebuffer

Returns

the number of bits

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_blue_bits ()

Cogl 2.0 Reference Manual 197 / 328

int
cogl_framebuffer_get_blue_bits (CoglFramebuffer *framebuffer);

Retrieves the number of blue bits of framebuffer

Parameters

framebuffer a pointer to a
CoglFramebuffer

Returns

the number of bits

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_alpha_bits ()

int
cogl_framebuffer_get_alpha_bits (CoglFramebuffer *framebuffer);

Retrieves the number of alpha bits of framebuffer

Parameters

framebuffer a pointer to a
CoglFramebuffer

Returns

the number of bits

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_depth_bits ()

int
cogl_framebuffer_get_depth_bits (CoglFramebuffer *framebuffer);

Retrieves the number of depth bits of framebuffer

Parameters

framebuffer a pointer to a
CoglFramebuffer

Returns

the number of bits

Cogl 2.0 Reference Manual 198 / 328

Since 2.0

Stability Level: Unstable

cogl_framebuffer_get_color_mask ()

CoglColorMask
cogl_framebuffer_get_color_mask (CoglFramebuffer *framebuffer);

Gets the current CoglColorMask of which channels would be written to the current framebuffer. Each bit set in the mask means
that the corresponding color would be written.

Parameters

framebuffer a pointer to a
CoglFramebuffer

Returns

A CoglColorMask

Since 1.8

Stability Level: Unstable

cogl_framebuffer_set_color_mask ()

void
cogl_framebuffer_set_color_mask (CoglFramebuffer *framebuffer,

CoglColorMask color_mask);

Defines a bit mask of which color channels should be written to the given framebuffer . If a bit is set in color_mask that
means that color will be written.

Parameters

framebuffer a pointer to a
CoglFramebuffer

color_mask
A CoglColorMask of which
color channels to write to
the current framebuffer.

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_samples_per_pixel ()

int
cogl_framebuffer_get_samples_per_pixel

(CoglFramebuffer *framebuffer);

Gets the number of points that are sampled per-pixel when rasterizing geometry. Usually by default this will return 0 which
means that single-sample not multisample rendering has been chosen. When using a GPU supporting multisample rendering it’s
possible to increase the number of samples per pixel using cogl_framebuffer_set_samples_per_pixel().

Cogl 2.0 Reference Manual 199 / 328

Calling cogl_framebuffer_get_samples_per_pixel() before the framebuffer has been allocated will simply return the value set us-
ing cogl_framebuffer_set_samples_per_pixel(). After the framebuffer has been allocated the value will reflect the actual number
of samples that will be made by the GPU.

Parameters

framebuffer A CoglFramebuffer
framebuffer

Returns

The number of point samples made per pixel when rasterizing geometry or 0 if single-sample rendering has been chosen.

Since 1.10

Stability Level: Unstable

cogl_framebuffer_set_samples_per_pixel ()

void
cogl_framebuffer_set_samples_per_pixel

(CoglFramebuffer *framebuffer,
int samples_per_pixel);

Requires that when rendering to framebuffer then n point samples should be made per pixel which will all contribute to the
final resolved color for that pixel. The idea is that the hardware aims to get quality similar to what you would get if you rendered
everything twice as big (for 4 samples per pixel) and then scaled that image back down with filtering. It can effectively remove the
jagged edges of polygons and should be more efficient than if you were to manually render at a higher resolution and downscale
because the hardware is often able to take some shortcuts. For example the GPU may only calculate a single texture sample for
all points of a single pixel, and for tile based architectures all the extra sample data (such as depth and stencil samples) may be
handled on-chip and so avoid increased demand on system memory bandwidth.

By default this value is usually set to 0 and that is referred to as "single-sample" rendering. A value of 1 or greater is referred to
as "multisample" rendering.

Note There are some semantic differences between single-sample rendering and multisampling with just 1 point sample such
as it being redundant to use the cogl_framebuffer_resolve_samples() and cogl_framebuffer_resolve_samples_region() apis
with single-sample rendering.

Note It’s recommended that cogl_framebuffer_resolve_samples_region() be explicitly used at the end of rendering to a point
sample buffer to minimize the number of samples that get resolved. By default Cogl will implicitly resolve all framebuffer samples
but if only a small region of a framebuffer has changed this can lead to redundant work being done.

Parameters

framebuffer A CoglFramebuffer
framebuffer

samples_per_pixel The minimum number of
samples per pixel

Since 1.8

Stability Level: Unstable

Cogl 2.0 Reference Manual 200 / 328

cogl_framebuffer_resolve_samples ()

void
cogl_framebuffer_resolve_samples (CoglFramebuffer *framebuffer);

When point sample rendering (also known as multisample rendering) has been enabled via cogl_framebuffer_set_samples_per_pixel()
then you can optionally call this function (or cogl_framebuffer_resolve_samples_region()) to explicitly resolve the point samples
into values for the final color buffer.

Some GPUs will implicitly resolve the point samples during rendering and so this function is effectively a nop, but with other
architectures it is desirable to defer the resolve step until the end of the frame.

Since Cogl will automatically ensure samples are resolved if the target color buffer is used as a source this API only needs to be
used if explicit control is desired - perhaps because you want to ensure that the resolve is completed in advance to avoid later
having to wait for the resolve to complete.

If you are performing incremental updates to a framebuffer you should consider using cogl_framebuffer_resolve_samples_region()
instead to avoid resolving redundant pixels.

Parameters

framebuffer A CoglFramebuffer
framebuffer

Since 1.8

Stability Level: Unstable

cogl_framebuffer_resolve_samples_region ()

void
cogl_framebuffer_resolve_samples_region

(CoglFramebuffer *framebuffer,
int x,
int y,
int width,
int height);

When point sample rendering (also known as multisample rendering) has been enabled via cogl_framebuffer_set_samples_per_pixel()
then you can optionally call this function (or cogl_framebuffer_resolve_samples()) to explicitly resolve the point samples into
values for the final color buffer.

Some GPUs will implicitly resolve the point samples during rendering and so this function is effectively a nop, but with other
architectures it is desirable to defer the resolve step until the end of the frame.

Use of this API is recommended if incremental, small updates to a framebuffer are being made because by default Cogl will
implicitly resolve all the point samples of the framebuffer which can result in redundant work if only a small number of samples
have changed.

Because some GPUs implicitly resolve point samples this function only guarantees that at-least the region specified will be
resolved and if you have rendered to a larger region then it’s possible that other samples may be implicitly resolved.

Parameters

framebuffer A CoglFramebuffer
framebuffer

x top-left x coordinate of
region to resolve

Cogl 2.0 Reference Manual 201 / 328

y top-left y coordinate of
region to resolve

width width of region to resolve
height height of region to resolve

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_context ()

CoglContext~*
cogl_framebuffer_get_context (CoglFramebuffer *framebuffer);

Can be used to query the CoglContext a given framebuffer was instantiated within. This is the CoglContext that was passed
to cogl_onscreen_new() for example.

Parameters

framebuffer A CoglFramebuffer

Returns

The CoglContext that the given framebuffer was instantiated within.

[transfer none]

Since 1.8

Stability Level: Unstable

cogl_framebuffer_clear ()

void
cogl_framebuffer_clear (CoglFramebuffer *framebuffer,

CoglBufferBit buffers,
const CoglColor *color);

Clears all the auxiliary buffers identified in the buffers mask, and if that includes the color buffer then the specified color is
used.

Parameters

framebuffer A CoglFramebuffer

buffers
A mask of CoglBufferBit’s
identifying which auxiliary
buffers to clear

color
The color to clear the color
buffer too if specified in
buffers .

Since 1.8

Stability Level: Unstable

Cogl 2.0 Reference Manual 202 / 328

cogl_framebuffer_clear4f ()

void
cogl_framebuffer_clear4f (CoglFramebuffer *framebuffer,

CoglBufferBit buffers,
float red,
float green,
float blue,
float alpha);

Clears all the auxiliary buffers identified in the buffers mask, and if that includes the color buffer then the specified color is
used.

Parameters

framebuffer A CoglFramebuffer

buffers
A mask of CoglBufferBit’s
identifying which auxiliary
buffers to clear

red
The red component of color
to clear the color buffer too
if specified in buffers .

green

The green component of
color to clear the color
buffer too if specified in
buffers .

blue

The blue component of
color to clear the color
buffer too if specified in
buffers .

alpha

The alpha component of
color to clear the color
buffer too if specified in
buffers .

Since 1.8

Stability Level: Unstable

cogl_framebuffer_read_pixels_into_bitmap ()

CoglBool
cogl_framebuffer_read_pixels_into_bitmap

(CoglFramebuffer *framebuffer,
int x,
int y,
CoglReadPixelsFlags source,
CoglBitmap *bitmap,
CoglError **error);

This reads a rectangle of pixels from the given framebuffer where position (0, 0) is the top left. The pixel at (x, y) is the first read,
and a rectangle of pixels with the same size as the bitmap is read right and downwards from that point.

Currently Cogl assumes that the framebuffer is in a premultiplied format so if the format of bitmap is non-premultiplied it will
convert it. To read the pixel values without any conversion you should either specify a format that doesn’t use an alpha channel
or use one of the formats ending in PRE.

Cogl 2.0 Reference Manual 203 / 328

Parameters

framebuffer A CoglFramebuffer
x The x position to read from
y The y position to read from

source

Identifies which auxillary
buffer you want to read
(only
COGL_READ_PIXELS_COLOR_BUFFER
supported currently)

bitmap The bitmap to store the
results in.

error A CoglError to catch
exceptional errors

Returns

TRUE if the read succeeded or FALSE otherwise. The function is only likely to fail if the bitmap points to a pixel buffer and it
could not be mapped.

Since 1.10

Stability Level: Unstable

cogl_framebuffer_read_pixels ()

CoglBool
cogl_framebuffer_read_pixels (CoglFramebuffer *framebuffer,

int x,
int y,
int width,
int height,
CoglPixelFormat format,
uint8_t *pixels);

This is a convenience wrapper around cogl_framebuffer_read_pixels_into_bitmap() which allocates a temporary CoglBitmap to
read pixel data directly into the given buffer. The rowstride of the buffer is assumed to be the width of the region times the bytes
per pixel of the format. The source for the data is always taken from the color buffer. If you want to use any other rowstride or
source, please use the cogl_framebuffer_read_pixels_into_bitmap() function directly.

The implementation of the function looks like this:

bitmap = cogl_bitmap_new_for_data (context,
width, height,
format,
/<!-- -->* rowstride *<!-- -->/
bpp * width,
pixels);

cogl_framebuffer_read_pixels_into_bitmap (framebuffer,
x, y,
COGL_READ_PIXELS_COLOR_BUFFER,
bitmap);

cogl_object_unref (bitmap);

Parameters

framebuffer A CoglFramebuffer

Cogl 2.0 Reference Manual 204 / 328

x The x position to read from
y The y position to read from

width The width of the region of
rectangles to read

height The height of the region of
rectangles to read

format The pixel format to store
the data in

pixels The address of the buffer to
store the data in

Returns

TRUE if the read succeeded or FALSE otherwise.

Since 1.10

Stability Level: Unstable

cogl_framebuffer_set_dither_enabled ()

void
cogl_framebuffer_set_dither_enabled (CoglFramebuffer *framebuffer,

CoglBool dither_enabled);

Enables or disabled dithering if supported by the hardware.

Dithering is a hardware dependent technique to increase the visible color resolution beyond what the underlying hardware sup-
ports by playing tricks with the colors placed into the framebuffer to give the illusion of other colors. (For example this can be
compared to half-toning used by some news papers to show varying levels of grey even though their may only be black and white
are available).

If the current display pipeline for framebuffer does not support dithering then this has no affect.

Dithering is enabled by default.

Parameters

framebuffer a pointer to a
CoglFramebuffer

dither_enabled TRUE to enable dithering
or FALSE to disable

Since 1.8

Stability Level: Unstable

cogl_framebuffer_get_dither_enabled ()

CoglBool
cogl_framebuffer_get_dither_enabled (CoglFramebuffer *framebuffer);

Returns whether dithering has been requested for the given framebuffer . See cogl_framebuffer_set_dither_enabled() for more
details about dithering.

Note This may return TRUE even when the underlying framebuffer display pipeline does not support dithering. This value
only represents the user’s request for dithering.

Cogl 2.0 Reference Manual 205 / 328

Parameters

framebuffer a pointer to a
CoglFramebuffer

Returns

TRUE if dithering has been requested or FALSE if not.

Since 1.8

Stability Level: Unstable

cogl_framebuffer_draw_rectangle ()

void
cogl_framebuffer_draw_rectangle (CoglFramebuffer *framebuffer,

CoglPipeline *pipeline,
float x_1,
float y_1,
float x_2,
float y_2);

Draws a rectangle to framebuffer with the given pipeline state and with the top left corner positioned at (x_1 , y_1) and
the bottom right corner positioned at (x_2 , y_2).

Note The position is the position before the rectangle has been transformed by the model-view matrix and the projection matrix.

Note If you want to describe a rectangle with a texture mapped on it then you can use
cogl_framebuffer_draw_textured_rectangle().

Parameters

framebuffer A destination
CoglFramebuffer

pipeline A CoglPipeline state object

x_1 X coordinate of the top-left
corner

y_1 Y coordinate of the top-left
corner

x_2 X coordinate of the
bottom-right corner

y_2 Y coordinate of the
bottom-right corner

Since 1.10

Stability Level: Unstable

cogl_framebuffer_draw_textured_rectangle ()

Cogl 2.0 Reference Manual 206 / 328

void
cogl_framebuffer_draw_textured_rectangle

(CoglFramebuffer *framebuffer,
CoglPipeline *pipeline,
float x_1,
float y_1,
float x_2,
float y_2,
float s_1,
float t_1,
float s_2,
float t_2);

Draws a textured rectangle to framebuffer using the given pipeline state with the top left corner positioned at (x_1 , y_1)
and the bottom right corner positioned at (x_2 , y_2). The top left corner will have texture coordinates of (s_1 , t_1) and the
bottom right corner will have texture coordinates of (s_2 , t_2).

Note The position is the position before the rectangle has been transformed by the model-view matrix and the projection matrix.

This is a high level drawing api that can handle any kind of CoglMetaTexture texture such as CoglTexture2DSliced textures which
may internally be comprised of multiple low-level textures. This is unlike low-level drawing apis such as cogl_primitive_draw()
which only support low level texture types that are directly supported by GPUs such as CoglTexture2D.

Note The given texture coordinates will only be used for the first texture layer of the pipeline and if your pipeline has more than
one layer then all other layers will have default texture coordinates of s_1=0.0 t_1=0.0 s_2=1.0 t_2=1.0

The given texture coordinates should always be normalized such that (0, 0) corresponds to the top left and (1, 1) corresponds to
the bottom right. To map an entire texture across the rectangle pass in s_1 =0, t_1 =0, s_2 =1, t_2 =1.

Note Even if you have associated a CoglTextureRectangle texture with one of your pipeline layers which normally implies
working with non-normalized texture coordinates this api should still be passed normalized texture coordinates.

Parameters

framebuffer A destination
CoglFramebuffer

pipeline A CoglPipeline state object

x_1 x coordinate upper left on
screen.

y_1 y coordinate upper left on
screen.

x_2 x coordinate lower right on
screen.

y_2 y coordinate lower right on
screen.

s_1 S texture coordinate of the
top-left coorner

t_1 T texture coordinate of the
top-left coorner

s_2 S texture coordinate of the
bottom-right coorner

t_2 T texture coordinate of the
bottom-right coorner

Cogl 2.0 Reference Manual 207 / 328

Since 1.10

Stability Level: Unstable

cogl_framebuffer_draw_multitextured_rectangle ()

void
cogl_framebuffer_draw_multitextured_rectangle

(CoglFramebuffer *framebuffer,
CoglPipeline *pipeline,
float x_1,
float y_1,
float x_2,
float y_2,
const float *tex_coords,
int tex_coords_len);

Draws a textured rectangle to framebuffer with the given pipeline state with the top left corner positioned at (x_1 , y_1)
and the bottom right corner positioned at (x_2 , y_2). As a pipeline may contain multiple texture layers this interface lets you
supply texture coordinates for each layer of the pipeline.

Note The position is the position before the rectangle has been transformed by the model-view matrix and the projection matrix.

This is a high level drawing api that can handle any kind of CoglMetaTexture texture for the first layer such as CoglTex-
ture2DSliced textures which may internally be comprised of multiple low-level textures. This is unlike low-level drawing apis
such as cogl_primitive_draw() which only support low level texture types that are directly supported by GPUs such as CoglTex-
ture2D.

Note This api can not currently handle multiple high-level meta texture layers. The first layer may be a high level meta texture
such as CoglTexture2DSliced but all other layers much be low level textures such as CoglTexture2D and additionally they should
be textures that can be sampled using normalized coordinates (so not CoglTextureRectangle textures).

The top left texture coordinate for layer 0 of any pipeline will be (tex_coords[0], tex_coords[1]) and the bottom right coordinate
will be (tex_coords[2], tex_coords[3]). The coordinates for layer 1 would be (tex_coords[4], tex_coords[5]) (tex_coords[6],
tex_coords[7]) and so on...

The given texture coordinates should always be normalized such that (0, 0) corresponds to the top left and (1, 1) corresponds
to the bottom right. To map an entire texture across the rectangle pass in tex_coords[0]=0, tex_coords[1]=0, tex_coords[2]=1,
tex_coords[3]=1.

Note Even if you have associated a CoglTextureRectangle texture which normally implies working with non-normalized texture
coordinates this api should still be passed normalized texture coordinates.

The first pair of coordinates are for the first layer (with the smallest layer index) and if you supply less texture coordinates than
there are layers in the current source material then default texture coordinates (0.0, 0.0, 1.0, 1.0) are generated.

Parameters

framebuffer A destination
CoglFramebuffer

pipeline A CoglPipeline state object

Cogl 2.0 Reference Manual 208 / 328

x_1 x coordinate upper left on
screen.

y_1 y coordinate upper left on
screen.

x_2 x coordinate lower right on
screen.

y_2 y coordinate lower right on
screen.

tex_coords

An array containing groups
of 4 float values: [s_1, t_1,
s_2, t_2] that are interpreted
as two texture coordinates;
one for the top left texel,
and one for the bottom right
texel. Each value should be
between 0.0 and 1.0, where
the coordinate (0.0, 0.0)
represents the top left of the
texture, and (1.0, 1.0) the
bottom right.

[in][array][transfer none]

tex_coords_len

The length of the
tex_coords array. (For
one layer and one group of
texture coordinates, this
would be 4)

Since 1.10

Stability Level: Unstable

cogl_framebuffer_draw_rectangles ()

void
cogl_framebuffer_draw_rectangles (CoglFramebuffer *framebuffer,

CoglPipeline *pipeline,
const float *coordinates,
unsigned int n_rectangles);

Draws a series of rectangles to framebuffer with the given pipeline state in the same way that cogl_framebuffer_draw_rectangle()
does.

The top left corner of the first rectangle is positioned at (coordinates[0], coordinates[1]) and the bottom right corner is positioned
at (coordinates[2], coordinates[3]). The positions for the second rectangle are (coordinates[4], coordinates[5]) and (coordi-
nates[6], coordinates[7]) and so on...

Note The position is the position before the rectangle has been transformed by the model-view matrix and the projection matrix.

As a general rule for better performance its recommended to use this this API instead of calling cogl_framebuffer_draw_textured_rectangle()
separately for multiple rectangles if all of the rectangles will be drawn together with the same pipeline state.

Parameters

framebuffer A destination
CoglFramebuffer

Cogl 2.0 Reference Manual 209 / 328

pipeline A CoglPipeline state object

coordinates

an array of coordinates
containing groups of 4 float
values: [x_1, y_1, x_2, y_2]
that are interpreted as two
position coordinates; one
for the top left of the
rectangle (x1, y1), and one
for the bottom right of the
rectangle (x2, y2).

[in][array][transfer none]

n_rectangles number of rectangles
defined in coordinates .

Since 1.10

Stability Level: Unstable

cogl_framebuffer_draw_textured_rectangles ()

void
cogl_framebuffer_draw_textured_rectangles

(CoglFramebuffer *framebuffer,
CoglPipeline *pipeline,
const float *coordinates,
unsigned int n_rectangles);

Draws a series of rectangles to framebuffer with the given pipeline state in the same way that cogl_framebuffer_draw_textured_rectangle()
does.

Note The position is the position before the rectangle has been transformed by the model-view matrix and the projection matrix.

This is a high level drawing api that can handle any kind of CoglMetaTexture texture such as CoglTexture2DSliced textures which
may internally be comprised of multiple low-level textures. This is unlike low-level drawing apis such as cogl_primitive_draw()
which only support low level texture types that are directly supported by GPUs such as CoglTexture2D.

The top left corner of the first rectangle is positioned at (coordinates[0], coordinates[1]) and the bottom right corner is positioned
at (coordinates[2], coordinates[3]). The top left texture coordinate is (coordinates[4], coordinates[5]) and the bottom right texture
coordinate is (coordinates[6], coordinates[7]). The coordinates for subsequent rectangles are defined similarly by the subsequent
coordinates.

As a general rule for better performance its recommended to use this this API instead of calling cogl_framebuffer_draw_textured_rectangle()
separately for multiple rectangles if all of the rectangles will be drawn together with the same pipeline state.

The given texture coordinates should always be normalized such that (0, 0) corresponds to the top left and (1, 1) corresponds
to the bottom right. To map an entire texture across the rectangle pass in tex_coords[0]=0, tex_coords[1]=0, tex_coords[2]=1,
tex_coords[3]=1.

Note Even if you have associated a CoglTextureRectangle texture which normally implies working with non-normalized texture
coordinates this api should still be passed normalized texture coordinates.

Parameters

Cogl 2.0 Reference Manual 210 / 328

framebuffer A destination
CoglFramebuffer

pipeline A CoglPipeline state object

coordinates

an array containing groups
of 8 float values: [x_1, y_1,
x_2, y_2, s_1, t_1, s_2, t_2]
that have the same meaning
as the arguments for
cogl_framebuffer_draw_textured_rectangle().

[in][array][transfer none]

n_rectangles number of rectangles to
coordinates to draw

Since 1.10

Stability Level: Unstable

cogl_framebuffer_discard_buffers ()

void
cogl_framebuffer_discard_buffers (CoglFramebuffer *framebuffer,

CoglBufferBit buffers);

Declares that the specified buffers no longer need to be referenced by any further rendering commands. This can be an
important optimization to avoid subsequent frames of rendering depending on the results of a previous frame.

For example; some tile-based rendering GPUs are able to avoid allocating and accessing system memory for the depth and stencil
buffer so long as these buffers are not required as input for subsequent frames and that can save a significant amount of memory
bandwidth used to save and restore their contents to system memory between frames.

It is currently considered an error to try and explicitly discard the color buffer by passing COGL_BUFFER_BIT_COLOR. This
is because the color buffer is already implicitly discard when you finish rendering to a CoglOnscreen framebuffer, and it’s not
meaningful to try and discard the color buffer of a CoglOffscreen framebuffer since they are single-buffered.

Parameters

framebuffer A CoglFramebuffer

buffers
A CoglBufferBit mask of
which ancillary buffers you
want to discard.

Since 1.8

Stability Level: Unstable

cogl_framebuffer_finish ()

void
cogl_framebuffer_finish (CoglFramebuffer *framebuffer);

This blocks the CPU until all pending rendering associated with the specified framebuffer has completed. It’s very rare that
developers should ever need this level of synchronization with the GPU and should never be used unless you clearly understand
why you need to explicitly force synchronization.

One example might be for benchmarking purposes to be sure timing measurements reflect the time that the GPU is busy for not
just the time it takes to queue rendering commands.

Cogl 2.0 Reference Manual 211 / 328

Parameters

framebuffer A CoglFramebuffer pointer

Since 1.10

Stability Level: Unstable

cogl_framebuffer_push_matrix ()

void
cogl_framebuffer_push_matrix (CoglFramebuffer *framebuffer);

Copies the current model-view matrix onto the matrix stack. The matrix can later be restored with cogl_framebuffer_pop_matrix().

Parameters

framebuffer A CoglFramebuffer pointer

Since 1.10

cogl_framebuffer_pop_matrix ()

void
cogl_framebuffer_pop_matrix (CoglFramebuffer *framebuffer);

Restores the model-view matrix on the top of the matrix stack.

Parameters

framebuffer A CoglFramebuffer pointer

Since 1.10

cogl_framebuffer_identity_matrix ()

void
cogl_framebuffer_identity_matrix (CoglFramebuffer *framebuffer);

Resets the current model-view matrix to the identity matrix.

Parameters

framebuffer A CoglFramebuffer pointer

Since 1.10

Stability Level: Unstable

cogl_framebuffer_scale ()

Cogl 2.0 Reference Manual 212 / 328

void
cogl_framebuffer_scale (CoglFramebuffer *framebuffer,

float x,
float y,
float z);

Multiplies the current model-view matrix by one that scales the x, y and z axes by the given values.

Parameters

framebuffer A CoglFramebuffer pointer

x Amount to scale along the
x-axis

y Amount to scale along the
y-axis

z Amount to scale along the
z-axis

Since 1.10

Stability Level: Unstable

cogl_framebuffer_translate ()

void
cogl_framebuffer_translate (CoglFramebuffer *framebuffer,

float x,
float y,
float z);

Multiplies the current model-view matrix by one that translates the model along all three axes according to the given values.

Parameters

framebuffer A CoglFramebuffer pointer

x Distance to translate along
the x-axis

y Distance to translate along
the y-axis

z Distance to translate along
the z-axis

Since 1.10

Stability Level: Unstable

cogl_framebuffer_rotate ()

void
cogl_framebuffer_rotate (CoglFramebuffer *framebuffer,

float angle,
float x,
float y,
float z);

Cogl 2.0 Reference Manual 213 / 328

Multiplies the current model-view matrix by one that rotates the model around the axis-vector specified by x , y and z . The
rotation follows the right-hand thumb rule so for example rotating by 10 degrees about the axis-vector (0, 0, 1) causes a small
counter-clockwise rotation.

Parameters

framebuffer A CoglFramebuffer pointer
angle Angle in degrees to rotate.

x X-component of vertex to
rotate around.

y Y-component of vertex to
rotate around.

z Z-component of vertex to
rotate around.

Since 1.10

Stability Level: Unstable

cogl_framebuffer_rotate_euler ()

void
cogl_framebuffer_rotate_euler (CoglFramebuffer *framebuffer,

const CoglEuler *euler);

Multiplies the current model-view matrix by one that rotates according to the rotation described by euler .

Parameters

framebuffer A CoglFramebuffer pointer
euler A CoglEuler

Since 2.0

Stability Level: Unstable

cogl_framebuffer_rotate_quaternion ()

void
cogl_framebuffer_rotate_quaternion (CoglFramebuffer *framebuffer,

const CoglQuaternion *quaternion);

Multiplies the current model-view matrix by one that rotates according to the rotation described by quaternion .

Parameters

framebuffer A CoglFramebuffer pointer
quaternion A CoglQuaternion

Since 2.0

Stability Level: Unstable

Cogl 2.0 Reference Manual 214 / 328

cogl_framebuffer_transform ()

void
cogl_framebuffer_transform (CoglFramebuffer *framebuffer,

const CoglMatrix *matrix);

Multiplies the current model-view matrix by the given matrix.

Parameters

framebuffer A CoglFramebuffer pointer

matrix the matrix to multiply with
the current model-view

Since 1.10

Stability Level: Unstable

cogl_framebuffer_get_modelview_matrix ()

void
cogl_framebuffer_get_modelview_matrix (CoglFramebuffer *framebuffer,

CoglMatrix *matrix);

Stores the current model-view matrix in matrix .

Parameters

framebuffer A CoglFramebuffer pointer

matrix return location for the
model-view matrix. [out]

Since 1.10

Stability Level: Unstable

cogl_framebuffer_set_modelview_matrix ()

void
cogl_framebuffer_set_modelview_matrix (CoglFramebuffer *framebuffer,

const CoglMatrix *matrix);

Sets matrix as the new model-view matrix.

Parameters

framebuffer A CoglFramebuffer pointer
matrix the new model-view matrix

Since 1.10

Stability Level: Unstable

Cogl 2.0 Reference Manual 215 / 328

cogl_framebuffer_perspective ()

void
cogl_framebuffer_perspective (CoglFramebuffer *framebuffer,

float fov_y,
float aspect,
float z_near,
float z_far);

Replaces the current projection matrix with a perspective matrix based on the provided values.

Note You should be careful not to have to great a z_far / z_near ratio since that will reduce the effectiveness of depth testing
since there wont be enough precision to identify the depth of objects near to each other.

Parameters

framebuffer A CoglFramebuffer pointer

fov_y Vertical field of view angle
in degrees.

aspect The (width over height)
aspect ratio for display

z_near
The distance to the near
clipping plane (Must be
positive, and must not be 0)

z_far
The distance to the far
clipping plane (Must be
positive)

Since 1.10

Stability Level: Unstable

cogl_framebuffer_frustum ()

void
cogl_framebuffer_frustum (CoglFramebuffer *framebuffer,

float left,
float right,
float bottom,
float top,
float z_near,
float z_far);

Replaces the current projection matrix with a perspective matrix for a given viewing frustum defined by 4 side clip planes that
all cross through the origin and 2 near and far clip planes.

Parameters

framebuffer A CoglFramebuffer pointer

left

X position of the left
clipping plane where it
intersects the near clipping
plane

Cogl 2.0 Reference Manual 216 / 328

right

X position of the right
clipping plane where it
intersects the near clipping
plane

bottom

Y position of the bottom
clipping plane where it
intersects the near clipping
plane

top

Y position of the top
clipping plane where it
intersects the near clipping
plane

z_near
The distance to the near
clipping plane (Must be
positive)

z_far
The distance to the far
clipping plane (Must be
positive)

Since 1.10

Stability Level: Unstable

cogl_framebuffer_orthographic ()

void
cogl_framebuffer_orthographic (CoglFramebuffer *framebuffer,

float x_1,
float y_1,
float x_2,
float y_2,
float near,
float far);

Replaces the current projection matrix with an orthographic projection matrix.

Parameters

framebuffer A CoglFramebuffer pointer

x_1 The x coordinate for the
first vertical clipping plane

y_1
The y coordinate for the
first horizontal clipping
plane

x_2
The x coordinate for the
second vertical clipping
plane

y_2
The y coordinate for the
second horizontal clipping
plane

near

The distance to the near
clipping plane (will be
negative if the plane is
behind the viewer)

far

The distance to the far
clipping plane (will be
negative if the plane is
behind the viewer)

Cogl 2.0 Reference Manual 217 / 328

Since 1.10

Stability Level: Unstable

cogl_framebuffer_get_projection_matrix ()

void
cogl_framebuffer_get_projection_matrix

(CoglFramebuffer *framebuffer,
CoglMatrix *matrix);

Stores the current projection matrix in matrix .

Parameters

framebuffer A CoglFramebuffer pointer

matrix return location for the
projection matrix. [out]

Since 1.10

Stability Level: Unstable

cogl_framebuffer_set_projection_matrix ()

void
cogl_framebuffer_set_projection_matrix

(CoglFramebuffer *framebuffer,
const CoglMatrix *matrix);

Sets matrix as the new projection matrix.

Parameters

framebuffer A CoglFramebuffer pointer
matrix the new projection matrix

Since 1.10

Stability Level: Unstable

cogl_framebuffer_push_scissor_clip ()

void
cogl_framebuffer_push_scissor_clip (CoglFramebuffer *framebuffer,

int x,
int y,
int width,
int height);

Specifies a rectangular clipping area for all subsequent drawing operations. Any drawing commands that extend outside the
rectangle will be clipped so that only the portion inside the rectangle will be displayed. The rectangle dimensions are not
transformed by the current model-view matrix.

The rectangle is intersected with the current clip region. To undo the effect of this function, call cogl_framebuffer_pop_clip().

Cogl 2.0 Reference Manual 218 / 328

Parameters

framebuffer A CoglFramebuffer pointer

x
left edge of the clip
rectangle in window
coordinates

y
top edge of the clip
rectangle in window
coordinates

width width of the clip rectangle
height height of the clip rectangle

Since 1.10

Stability Level: Unstable

cogl_framebuffer_push_rectangle_clip ()

void
cogl_framebuffer_push_rectangle_clip (CoglFramebuffer *framebuffer,

float x_1,
float y_1,
float x_2,
float y_2);

Specifies a modelview transformed rectangular clipping area for all subsequent drawing operations. Any drawing commands
that extend outside the rectangle will be clipped so that only the portion inside the rectangle will be displayed. The rectangle
dimensions are transformed by the current model-view matrix.

The rectangle is intersected with the current clip region. To undo the effect of this function, call cogl_framebuffer_pop_clip().

Parameters

framebuffer A CoglFramebuffer pointer

x_1 x coordinate for top left
corner of the clip rectangle

y_1 y coordinate for top left
corner of the clip rectangle

x_2
x coordinate for bottom
right corner of the clip
rectangle

y_2
y coordinate for bottom
right corner of the clip
rectangle

Since 1.10

Stability Level: Unstable

cogl_framebuffer_push_primitive_clip ()

void
cogl_framebuffer_push_primitive_clip (CoglFramebuffer *framebuffer,

CoglPrimitive *primitive,
float bounds_x1,
float bounds_y1,

Cogl 2.0 Reference Manual 219 / 328

float bounds_x2,
float bounds_y2);

Sets a new clipping area using a 2D shaped described with a CoglPrimitive. The shape must not contain self overlapping geometry
and must lie on a single 2D plane. A bounding box of the 2D shape in local coordinates (the same coordinates used to describe
the shape) must be given. It is acceptable for the bounds to be larger than the true bounds but behaviour is undefined if the bounds
are smaller than the true bounds.

The primitive is transformed by the current model-view matrix and the silhouette is intersected with the previous clipping area.
To restore the previous clipping area, call cogl_framebuffer_pop_clip().

Parameters

framebuffer A CoglFramebuffer pointer

primitive A CoglPrimitive describing
a flat 2D shape

bounds_x1
x coordinate for the top-left
corner of the primitives
bounds

bounds_y1
y coordinate for the top-left
corner of the primitives
bounds

bounds_x2
x coordinate for the
bottom-right corner of the
primitives bounds.

bounds_y2
y coordinate for the
bottom-right corner of the
primitives bounds.

Since 1.10

Stability Level: Unstable

cogl_framebuffer_pop_clip ()

void
cogl_framebuffer_pop_clip (CoglFramebuffer *framebuffer);

Reverts the clipping region to the state before the last call to cogl_framebuffer_push_scissor_clip(), cogl_framebuffer_push_rectangle_clip()
cogl_framebuffer_push_path_clip(), or cogl_framebuffer_push_primitive_clip().

Parameters

framebuffer A CoglFramebuffer pointer

Since 1.10

Stability Level: Unstable

Types and Values

CoglFramebuffer

typedef void CoglFramebuffer;

Cogl 2.0 Reference Manual 220 / 328

1.11.2 CoglOnscreen: The Onscreen Framebuffer Interface

CoglOnscreen: The Onscreen Framebuffer Interface —

Functions

CoglBool cogl_is_onscreen ()
#define COGL_ONSCREEN()
CoglOnscreen * cogl_onscreen_new ()
void (*CoglOnscreenX11MaskCallback) ()
void cogl_x11_onscreen_set_foreign_window_xid ()
uint32_t cogl_x11_onscreen_get_window_xid ()
uint32_t cogl_x11_onscreen_get_visual_xid ()
void cogl_win32_onscreen_set_foreign_window ()
HWND cogl_win32_onscreen_get_window ()
void cogl_onscreen_show ()
void cogl_onscreen_hide ()
void (*CoglFrameCallback) ()
CoglFrameClosure * cogl_onscreen_add_frame_callback ()
void cogl_onscreen_remove_frame_callback ()
void (*CoglOnscreenDirtyCallback) ()
CoglOnscreenDirtyClosure * cogl_onscreen_add_dirty_callback ()
void cogl_onscreen_remove_dirty_callback ()
void (*CoglOnscreenResizeCallback) ()
CoglOnscreenResizeClosure * cogl_onscreen_add_resize_callback ()
void cogl_onscreen_remove_resize_callback ()
void cogl_onscreen_swap_buffers ()
void cogl_onscreen_swap_buffers_with_damage ()
void cogl_onscreen_swap_region ()
void cogl_onscreen_set_swap_throttled ()

Types and Values

CoglOnscreen
typedef CoglFrameClosure
struct CoglOnscreenDirtyInfo
typedef CoglOnscreenDirtyClosure
typedef CoglOnscreenResizeClosure

Description

Functions

cogl_is_onscreen ()

CoglBool
cogl_is_onscreen (void *object);

Gets whether the given object references a CoglOnscreen.

Parameters

object A CoglObject pointer

Cogl 2.0 Reference Manual 221 / 328

Returns

TRUE if the object references a CoglOnscreen and FALSE otherwise.

Since 1.10

Stability Level: Unstable

COGL_ONSCREEN()

#define COGL_ONSCREEN(X) ((CoglOnscreen *)(X))

cogl_onscreen_new ()

CoglOnscreen~*
cogl_onscreen_new (CoglContext *context,

int width,
int height);

Instantiates an "unallocated" CoglOnscreen framebuffer that may be configured before later being allocated, either implicitly
when it is first used or explicitly via cogl_framebuffer_allocate().

Parameters

context A CoglContext

width The desired framebuffer
width

height The desired framebuffer
height

Returns

A newly instantiated CoglOnscreen framebuffer.

[transfer full]

Since 1.8

Stability Level: Unstable

CoglOnscreenX11MaskCallback ()

void
(*CoglOnscreenX11MaskCallback) (CoglOnscreen *onscreen,

uint32_t event_mask,
void *user_data);

cogl_x11_onscreen_set_foreign_window_xid ()

void
cogl_x11_onscreen_set_foreign_window_xid

(CoglOnscreen *onscreen,
uint32_t xid,
CoglOnscreenX11MaskCallback update,
void *user_data);

Cogl 2.0 Reference Manual 222 / 328

Ideally we would recommend that you let Cogl be responsible for creating any X window required to back an onscreen frame-
buffer but if you really need to target a window created manually this function can be called before onscreen has been allocated
to set a foreign XID for your existing X window.

Since Cogl needs, for example, to track changes to the size of an X window it requires that certain events be selected for via the
core X protocol. This requirement may also be changed asynchronously so you must pass in an update callback to inform you
of Cogl’s required event mask.

For example if you are using Xlib you could use this API roughly as follows: [{ static void my_update_cogl_x11_event_mask
(CoglOnscreen *onscreen, uint32_t event_mask, void *user_data) { XSetWindowAttributes attrs; MyData *data = user_data;
attrs.event_mask = event_mask | data->my_event_mask; XChangeWindowAttributes (data->xdpy, data->xwin, CWEventMask,
&attrs); }

{ *snip* cogl_x11_onscreen_set_foreign_window_xid (onscreen, data->xwin, my_update_cogl_x11_event_mask, data); *snip*
} }]

Parameters

onscreen
The unallocated
framebuffer to associated
with an X window.

xid The XID of an existing X
window

update

A callback that notifies of
updates to what Cogl
requires to be in the core X
protocol event mask.

user_data user data passed to update

Since 2.0

Stability Level: Unstable

cogl_x11_onscreen_get_window_xid ()

uint32_t
cogl_x11_onscreen_get_window_xid (CoglOnscreen *onscreen);

Assuming you know the given onscreen framebuffer is based on an x11 window this queries the XID of that window. If
cogl_x11_onscreen_set_foreign_window_xid() was previously called then it will return that same XID otherwise it will be the
XID of a window Cogl created internally. If the window has not been allocated yet and a foreign xid has not been set then it’s
undefined what value will be returned.

It’s undefined what this function does if called when not using an x11 based renderer.

Parameters

onscreen A CoglOnscreen
framebuffer

Since 1.10

Stability Level: Unstable

cogl_x11_onscreen_get_visual_xid ()

Cogl 2.0 Reference Manual 223 / 328

uint32_t
cogl_x11_onscreen_get_visual_xid (CoglOnscreen *onscreen);

cogl_win32_onscreen_set_foreign_window ()

void
cogl_win32_onscreen_set_foreign_window

(CoglOnscreen *onscreen,
HWND hwnd);

Ideally we would recommend that you let Cogl be responsible for creating any window required to back an onscreen framebuffer
but if you really need to target a window created manually this function can be called before onscreen has been allocated to set
a foreign XID for your existing X window.

Parameters

onscreen A CoglOnscreen
framebuffer

hwnd A win32 window handle

Since 1.10

Stability Level: Unstable

cogl_win32_onscreen_get_window ()

HWND
cogl_win32_onscreen_get_window (CoglOnscreen *onscreen);

Queries the internally created window HWND backing the given onscreen framebuffer. If cogl_win32_onscreen_set_foreign_window()
has been used then it will return the same handle set with that API.

Parameters

onscreen A CoglOnscreen
framebuffer

Since 1.10

Stability Level: Unstable

cogl_onscreen_show ()

void
cogl_onscreen_show (CoglOnscreen *onscreen);

This requests to make onscreen visible to the user.

Actually the precise semantics of this function depend on the window system currently in use, and if you don’t have a multi-
windowining system this function may in-fact do nothing.

This function will implicitly allocate the given onscreen framebuffer before showing it if it hasn’t already been allocated.

Cogl 2.0 Reference Manual 224 / 328

When using the Wayland winsys calling this will set the surface to a toplevel type which will make it appear. If the application
wants to set a different type for the surface, it can avoid calling cogl_onscreen_show() and set its own type directly with the
Wayland client API via cogl_wayland_onscreen_get_surface().

Note Since Cogl doesn’t explicitly track the visibility status of onscreen framebuffers it wont try to avoid redundant window
system requests e.g. to show an already visible window. This also means that it’s acceptable to alternatively use native APIs to
show and hide windows without confusing Cogl.

Parameters

onscreen The onscreen framebuffer
to make visible

Since 2.0

Stability Level: Unstable

cogl_onscreen_hide ()

void
cogl_onscreen_hide (CoglOnscreen *onscreen);

This requests to make onscreen invisible to the user.

Actually the precise semantics of this function depend on the window system currently in use, and if you don’t have a multi-
windowining system this function may in-fact do nothing.

This function does not implicitly allocate the given onscreen framebuffer before hiding it.

Note Since Cogl doesn’t explicitly track the visibility status of onscreen framebuffers it wont try to avoid redundant window
system requests e.g. to show an already visible window. This also means that it’s acceptable to alternatively use native APIs to
show and hide windows without confusing Cogl.

Parameters

onscreen The onscreen framebuffer
to make invisible

Since 2.0

Stability Level: Unstable

CoglFrameCallback ()

void
(*CoglFrameCallback) (CoglOnscreen *onscreen,

CoglFrameEvent event,
CoglFrameInfo *info,
void *user_data);

Is a callback that can be registered via cogl_onscreen_add_frame_callback() to be called when a frame progresses in some notable
way.

Cogl 2.0 Reference Manual 225 / 328

Please see the documentation for CoglFrameEvent and cogl_onscreen_add_frame_callback() for more details about what events
can be notified.

Parameters

onscreen The onscreen that the frame
is associated with

event
A CoglFrameEvent
notifying how the frame has
progressed

info

The meta information, such
as timing information,
about the frame that has
progressed.

user_data The user pointer passed to
cogl_onscreen_add_frame_callback()

Since 1.14

Stability Level: Unstable

cogl_onscreen_add_frame_callback ()

CoglFrameClosure~*
cogl_onscreen_add_frame_callback (CoglOnscreen *onscreen,

CoglFrameCallback callback,
void *user_data,
CoglUserDataDestroyCallback destroy);

Installs a callback function that will be called for significant events relating to the given onscreen framebuffer.

The callback will be used to notify when the system compositor is ready for this application to render a new frame. In this case
COGL_FRAME_EVENT_SYNC will be passed as the event argument to the given callback in addition to the CoglFrameInfo
corresponding to the frame beeing acknowledged by the compositor.

The callback will also be called to notify when the frame has ended. In this case COGL_FRAME_EVENT_COMPLETE will
be passed as the event argument to the given callback in addition to the CoglFrameInfo corresponding to the newly presented
frame. The meaning of "ended" here simply means that no more timing information will be collected within the corresponding
CoglFrameInfo and so this is a good opportunity to analyse the given info. It does not necessarily mean that the GPU has finished
rendering the corresponding frame.

We highly recommend throttling your application according to COGL_FRAME_EVENT_SYNC events so that your application
can avoid wasting resources, drawing more frames than your system compositor can display.

Parameters

onscreen A CoglOnscreen
framebuffer

callback A callback function to call
for frame events

user_data A private pointer to be
passed to callback

destroy

An optional callback to
destroy user_data when
the callback is removed
or onscreen is freed.

Cogl 2.0 Reference Manual 226 / 328

Returns

a CoglFrameClosure pointer that can be used to remove the callback and associated user_data later.

Since 1.14

Stability Level: Unstable

cogl_onscreen_remove_frame_callback ()

void
cogl_onscreen_remove_frame_callback (CoglOnscreen *onscreen,

CoglFrameClosure *closure);

Removes a callback and associated user data that were previously registered using cogl_onscreen_add_frame_callback().

If a destroy callback was passed to cogl_onscreen_add_frame_callback() to destroy the user data then this will get called.

Parameters

onscreen A CoglOnscreen

closure
A CoglFrameClosure
returned from
cogl_onscreen_add_frame_callback()

Since 1.14

Stability Level: Unstable

CoglOnscreenDirtyCallback ()

void
(*CoglOnscreenDirtyCallback) (CoglOnscreen *onscreen,

const CoglOnscreenDirtyInfo *info,
void *user_data);

Is a callback that can be registered via cogl_onscreen_add_dirty_callback() to be called when the windowing system determines
that a region of the onscreen window has been lost and the application should redraw it.

Parameters

onscreen The onscreen that the frame
is associated with

info
A CoglOnscreenDirtyInfo
struct containing the details
of the dirty area

user_data The user pointer passed to
cogl_onscreen_add_frame_callback()

Since 1.16

Stability Level: Unstable

cogl_onscreen_add_dirty_callback ()

Cogl 2.0 Reference Manual 227 / 328

CoglOnscreenDirtyClosure~*
cogl_onscreen_add_dirty_callback (CoglOnscreen *onscreen,

CoglOnscreenDirtyCallback callback,
void *user_data,
CoglUserDataDestroyCallback destroy);

Installs a callback function that will be called whenever the window system has lost the contents of a region of the onscreen
buffer and the application should redraw it to repair the buffer. For example this may happen in a window system without a
compositor if a window that was previously covering up the onscreen window has been moved causing a region of the onscreen
to be exposed.

The callback will be passed a CoglOnscreenDirtyInfo struct which decribes a rectangle containing the newly dirtied region.
Note that this may be called multiple times to describe a non-rectangular region composed of multiple smaller rectangles.

The dirty events are separate from COGL_FRAME_EVENT_SYNC events so the application should also listen for this event
before rendering the dirty region to ensure that the framebuffer is actually ready for rendering.

Parameters

onscreen A CoglOnscreen
framebuffer

callback A callback function to call
for dirty events

user_data A private pointer to be
passed to callback

destroy

An optional callback to
destroy user_data when
the callback is removed
or onscreen is freed.

Returns

a CoglOnscreenDirtyClosure pointer that can be used to remove the callback and associated user_data later.

Since 1.16

Stability Level: Unstable

cogl_onscreen_remove_dirty_callback ()

void
cogl_onscreen_remove_dirty_callback (CoglOnscreen *onscreen,

CoglOnscreenDirtyClosure *closure);

Removes a callback and associated user data that were previously registered using cogl_onscreen_add_dirty_callback().

If a destroy callback was passed to cogl_onscreen_add_dirty_callback() to destroy the user data then this will also get called.

Parameters

onscreen A CoglOnscreen

closure

A
CoglOnscreenDirtyClosure
returned from
cogl_onscreen_add_dirty_callback()

Cogl 2.0 Reference Manual 228 / 328

Since 1.16

Stability Level: Unstable

CoglOnscreenResizeCallback ()

void
(*CoglOnscreenResizeCallback) (CoglOnscreen *onscreen,

int width,
int height,
void *user_data);

Is a callback type used with the cogl_onscreen_add_resize_callback() allowing applications to be notified whenever an onscreen
framebuffer is resized.

Note Cogl automatically updates the viewport of an onscreen framebuffer that is resized so this callback is also an indication
that the viewport has been modified too

Note A resize callback will only ever be called while dispatching Cogl events from the system mainloop; so for example during
cogl_poll_renderer_dispatch(). This is so that callbacks shouldn’t occur while an application might have arbitrary locks held for
example.

Parameters

onscreen
A CoglOnscreen
framebuffer that was
resized

width The new width of
onscreen

height The new height of
onscreen

user_data The private passed to
cogl_onscreen_add_resize_callback()

Since 2.0

cogl_onscreen_add_resize_callback ()

CoglOnscreenResizeClosure~*
cogl_onscreen_add_resize_callback (CoglOnscreen *onscreen,

CoglOnscreenResizeCallback callback,
void *user_data,
CoglUserDataDestroyCallback destroy);

Registers a callback with onscreen that will be called whenever the onscreen framebuffer changes size.

The callback can be removed using cogl_onscreen_remove_resize_callback() passing the returned closure pointer.

Note Since Cogl automatically updates the viewport of an onscreen framebuffer that is resized, a resize callback can also
be used to track when the viewport has been changed automatically by Cogl in case your application needs more specialized
control over the viewport.

Cogl 2.0 Reference Manual 229 / 328

Note A resize callback will only ever be called while dispatching Cogl events from the system mainloop; so for example during
cogl_poll_renderer_dispatch(). This is so that callbacks shouldn’t occur while an application might have arbitrary locks held for
example.

Parameters

onscreen A CoglOnscreen
framebuffer

callback
A CoglOnscreenResize-
Callback to call when the
onscreen changes size.

user_data Private data to be passed to
callback .

destroy

An optional callback to
destroy user_data when
the callback is removed
or onscreen is freed.

Returns

a CoglOnscreenResizeClosure pointer that can be used to remove the callback and associated user_data later.

Since 2.0

cogl_onscreen_remove_resize_callback ()

void
cogl_onscreen_remove_resize_callback (CoglOnscreen *onscreen,

CoglOnscreenResizeClosure *closure);

Removes a resize callback and user_data pair that were previously associated with onscreen via cogl_onscreen_add_resize_callback().

Parameters

onscreen A CoglOnscreen
framebuffer

closure An identifier returned from
cogl_onscreen_add_resize_callback()

Since 2.0

cogl_onscreen_swap_buffers ()

void
cogl_onscreen_swap_buffers (CoglOnscreen *onscreen);

Swaps the current back buffer being rendered too, to the front for display.

This function also implicitly discards the contents of the color, depth and stencil buffers as if cogl_framebuffer_discard_buffers()
were used. The significance of the discard is that you should not expect to be able to start a new frame that incrementally builds
on the contents of the previous frame.

Cogl 2.0 Reference Manual 230 / 328

Note It is highly recommended that applications use cogl_onscreen_swap_buffers_with_damage() instead whenever possible
and also use the cogl_onscreen_get_buffer_age() api so they can perform incremental updates to older buffers instead of
having to render a full buffer for every frame.

Parameters

onscreen A CoglOnscreen
framebuffer

Since 1.10

Stability Level: Unstable

cogl_onscreen_swap_buffers_with_damage ()

void
cogl_onscreen_swap_buffers_with_damage

(CoglOnscreen *onscreen,
const int *rectangles,
int n_rectangles);

Swaps the current back buffer being rendered too, to the front for display and provides information to any system compositor
about what regions of the buffer have changed (damage) with respect to the last swapped buffer.

This function has the same semantics as cogl_framebuffer_swap_buffers() except that it additionally allows applications to pass
a list of damaged rectangles which may be passed on to a compositor so that it can minimize how much of the screen is redrawn
in response to this applications newly swapped front buffer.

For example if your application is only animating a small object in the corner of the screen and everything else is remaining static
then it can help the compositor to know that only the bottom right corner of your newly swapped buffer has really changed with
respect to your previously swapped front buffer.

If n_rectangles is 0 then the whole buffer will implicitly be reported as damaged as if cogl_onscreen_swap_buffers() had been
called.

This function also implicitly discards the contents of the color, depth and stencil buffers as if cogl_framebuffer_discard_buffers()
were used. The significance of the discard is that you should not expect to be able to start a new frame that incrementally builds
on the contents of the previous frame. If you want to perform incremental updates to older back buffers then please refer to the
cogl_onscreen_get_buffer_age() api.

Whenever possible it is recommended that applications use this function instead of cogl_onscreen_swap_buffers() to improve
performance when running under a compositor.

Note It is highly recommended to use this API in conjunction with the cogl_onscreen_get_buffer_age() api so that your appli-
cation can perform incremental rendering based on old back buffers.

Parameters

onscreen A CoglOnscreen
framebuffer

rectangles

An array of integer 4-tuples
representing damaged
rectangles as (x, y, width,
height) tuples.

n_rectangles The number of 4-tuples to
be read from rectangles

Cogl 2.0 Reference Manual 231 / 328

Since 1.16

Stability Level: Unstable

cogl_onscreen_swap_region ()

void
cogl_onscreen_swap_region (CoglOnscreen *onscreen,

const int *rectangles,
int n_rectangles);

Swaps a region of the back buffer being rendered too, to the front for display. rectangles represents the region as array of
n_rectangles each defined by 4 sequential (x, y, width, height) integers.

This function also implicitly discards the contents of the color, depth and stencil buffers as if cogl_framebuffer_discard_buffers()
were used. The significance of the discard is that you should not expect to be able to start a new frame that incrementally builds
on the contents of the previous frame.

Parameters

onscreen A CoglOnscreen
framebuffer

rectangles
An array of integer 4-tuples
representing rectangles as
(x, y, width, height) tuples.

n_rectangles The number of 4-tuples to
be read from rectangles

Since 1.10

Stability Level: Unstable

cogl_onscreen_set_swap_throttled ()

void
cogl_onscreen_set_swap_throttled (CoglOnscreen *onscreen,

CoglBool throttled);

Requests that the given onscreen framebuffer should have swap buffer requests (made using cogl_onscreen_swap_buffers())
throttled either by a displays vblank period or perhaps some other mechanism in a composited environment.

Parameters

onscreen A CoglOnscreen
framebuffer

throttled Whether swap throttling is
wanted or not.

Since 1.8

Stability Level: Unstable

Cogl 2.0 Reference Manual 232 / 328

Types and Values

CoglOnscreen

typedef struct _CoglOnscreen CoglOnscreen;

CoglFrameClosure

typedef struct _CoglClosure CoglFrameClosure;

An opaque type that tracks a CoglFrameCallback and associated user data. A CoglFrameClosure pointer will be returned from
cogl_onscreen_add_frame_callback() and it allows you to remove a callback later using cogl_onscreen_remove_frame_callback().

Since 1.14

Stability Level: Unstable

struct CoglOnscreenDirtyInfo

struct CoglOnscreenDirtyInfo {
int x, y;
int width, height;

};

A structure passed to callbacks registered using cogl_onscreen_add_dirty_callback(). The members describe a rectangle within
the onscreen buffer that should be redrawn.

Members

int x;

Left
edge
of
the
dirty
rect-
an-
gle

int y;

Top
edge
of
the
dirty
rect-
an-
gle,
mea-
sured
from
the
top
of
the
win-
dow

Cogl 2.0 Reference Manual 233 / 328

int width;

Width
of
the
dirty
rect-
an-
gle

int height;

Height
of
the
dirty
rect-
an-
gle

Since 1.16

Stability Level: Unstable

CoglOnscreenDirtyClosure

typedef struct _CoglClosure CoglOnscreenDirtyClosure;

An opaque type that tracks a CoglOnscreenDirtyCallback and associated user data. A CoglOnscreenDirtyClosure pointer will be
returned from cogl_onscreen_add_dirty_callback() and it allows you to remove a callback later using cogl_onscreen_remove_dirty_callback().

Since 1.16

Stability Level: Unstable

CoglOnscreenResizeClosure

typedef struct _CoglClosure CoglOnscreenResizeClosure;

An opaque type that tracks a CoglOnscreenResizeCallback and associated user data. A CoglOnscreenResizeClosure pointer will
be returned from cogl_onscreen_add_resize_callback() and it allows you to remove a callback later using cogl_onscreen_remove_resize_callback().

Since 2.0

Stability Level: Unstable

1.11.3 Offscreen Framebuffers

Offscreen Framebuffers — Functions for creating and manipulating offscreen framebuffers.

Functions

CoglBool cogl_is_offscreen ()
CoglOffscreen * cogl_offscreen_new_with_texture ()

Types and Values

CoglOffscreen

Cogl 2.0 Reference Manual 234 / 328

Description

Cogl allows creating and operating on offscreen framebuffers.

Functions

cogl_is_offscreen ()

CoglBool
cogl_is_offscreen (void *object);

Determines whether the given CoglObject references an offscreen framebuffer object.

Parameters

object A pointer to a CoglObject

Returns

TRUE if object is a CoglOffscreen framebuffer, FALSE otherwise

cogl_offscreen_new_with_texture ()

CoglOffscreen~*
cogl_offscreen_new_with_texture (CoglTexture *texture);

This creates an offscreen framebuffer object using the given texture as the primary color buffer. It doesn’t just initialize the
contents of the offscreen buffer with the texture ; they are tightly bound so that drawing to the offscreen buffer effectively
updates the contents of the given texture. You don’t need to destroy the offscreen buffer before you can use the texture again.

Note This api only works with low-level CoglTexture types such as CoglTexture2D, CoglTexture3D and CoglTextureRectangle,
and not with meta-texture types such as CoglTexture2DSliced.

The storage for the framebuffer is actually allocated lazily so this function will never return NULL to indicate a runtime error.
This means it is still possible to configure the framebuffer before it is really allocated.

Simple applications without full error handling can simply rely on Cogl to lazily allocate the storage of framebuffers but you
should be aware that if Cogl encounters an error (such as running out of GPU memory) then your application will simply abort
with an error message. If you need to be able to catch such exceptions at runtime then you can explicitly allocate your framebuffer
when you have finished configuring it by calling cogl_framebuffer_allocate() and passing in a CoglError argument to catch any
exceptions.

Parameters

texture A CoglTexture pointer

Returns

a newly instantiated CoglOffscreen framebuffer.

[transfer full]

Cogl 2.0 Reference Manual 235 / 328

Types and Values

CoglOffscreen

typedef struct _CoglOffscreen CoglOffscreen;

1.12 Utilities

1.12.1 Color Type

Color Type — A generic color definition

Functions

CoglColor * cogl_color_copy ()
void cogl_color_free ()
void cogl_color_init_from_4ub ()
void cogl_color_init_from_4f ()
void cogl_color_init_from_4fv ()
float cogl_color_get_red ()
float cogl_color_get_green ()
float cogl_color_get_blue ()
float cogl_color_get_alpha ()
uint8_t cogl_color_get_red_byte ()
uint8_t cogl_color_get_green_byte ()
uint8_t cogl_color_get_blue_byte ()
uint8_t cogl_color_get_alpha_byte ()
float cogl_color_get_red_float ()
float cogl_color_get_green_float ()
float cogl_color_get_blue_float ()
float cogl_color_get_alpha_float ()
void cogl_color_set_red ()
void cogl_color_set_green ()
void cogl_color_set_blue ()
void cogl_color_set_alpha ()
void cogl_color_set_red_byte ()
void cogl_color_set_green_byte ()
void cogl_color_set_blue_byte ()
void cogl_color_set_alpha_byte ()
void cogl_color_set_red_float ()
void cogl_color_set_green_float ()
void cogl_color_set_blue_float ()
void cogl_color_set_alpha_float ()
void cogl_color_premultiply ()
void cogl_color_unpremultiply ()
CoglBool cogl_color_equal ()
void cogl_color_init_from_hsl ()
void cogl_color_to_hsl ()

Types and Values

struct CoglColor

Cogl 2.0 Reference Manual 236 / 328

Description

CoglColor is a simple structure holding the definition of a color such that it can be efficiently used by GL

Functions

cogl_color_copy ()

CoglColor~*
cogl_color_copy (const CoglColor *color);

Creates a copy of color

Parameters

color the color to copy

Returns

a newly-allocated CoglColor. Use cogl_color_free() to free the allocate resources

Since 1.0

cogl_color_free ()

void
cogl_color_free (CoglColor *color);

Frees the resources allocated by cogl_color_copy().

Parameters

color the color to free

Since 1.0

cogl_color_init_from_4ub ()

void
cogl_color_init_from_4ub (CoglColor *color,

uint8_t red,
uint8_t green,
uint8_t blue,
uint8_t alpha);

Sets the values of the passed channels into a CoglColor.

Parameters

color A pointer to a CoglColor to
initialize

Cogl 2.0 Reference Manual 237 / 328

red value of the red channel,
between 0 and 255

green value of the green channel,
between 0 and 255

blue value of the blue channel,
between 0 and 255

alpha value of the alpha channel,
between 0 and 255

Since 1.4

cogl_color_init_from_4f ()

void
cogl_color_init_from_4f (CoglColor *color,

float red,
float green,
float blue,
float alpha);

Sets the values of the passed channels into a CoglColor

Parameters

color A pointer to a CoglColor to
initialize

red value of the red channel,
between 0 and 1.0

green value of the green channel,
between 0 and 1.0

blue value of the blue channel,
between 0 and 1.0

alpha value of the alpha channel,
between 0 and 1.0

Since 1.4

cogl_color_init_from_4fv ()

void
cogl_color_init_from_4fv (CoglColor *color,

const float *color_array);

Sets the values of the passed channels into a CoglColor

Parameters

color A pointer to a CoglColor to
initialize

color_array a pointer to an array of 4
float color components

Since 1.4

Cogl 2.0 Reference Manual 238 / 328

cogl_color_get_red ()

float
cogl_color_get_red (const CoglColor *color);

Retrieves the red channel of color as a fixed point value between 0 and 1.0.

Parameters

color a CoglColor

Returns

the red channel of the passed color

Since 1.0

cogl_color_get_green ()

float
cogl_color_get_green (const CoglColor *color);

Retrieves the green channel of color as a fixed point value between 0 and 1.0.

Parameters

color a CoglColor

Returns

the green channel of the passed color

Since 1.0

cogl_color_get_blue ()

float
cogl_color_get_blue (const CoglColor *color);

Retrieves the blue channel of color as a fixed point value between 0 and 1.0.

Parameters

color a CoglColor

Returns

the blue channel of the passed color

Since 1.0

cogl_color_get_alpha ()

Cogl 2.0 Reference Manual 239 / 328

float
cogl_color_get_alpha (const CoglColor *color);

Retrieves the alpha channel of color as a fixed point value between 0 and 1.0.

Parameters

color a CoglColor

Returns

the alpha channel of the passed color

Since 1.0

cogl_color_get_red_byte ()

uint8_t
cogl_color_get_red_byte (const CoglColor *color);

Retrieves the red channel of color as a byte value between 0 and 255

Parameters

color a CoglColor

Returns

the red channel of the passed color

Since 1.0

cogl_color_get_green_byte ()

uint8_t
cogl_color_get_green_byte (const CoglColor *color);

Retrieves the green channel of color as a byte value between 0 and 255

Parameters

color a CoglColor

Returns

the green channel of the passed color

Since 1.0

cogl_color_get_blue_byte ()

Cogl 2.0 Reference Manual 240 / 328

uint8_t
cogl_color_get_blue_byte (const CoglColor *color);

Retrieves the blue channel of color as a byte value between 0 and 255

Parameters

color a CoglColor

Returns

the blue channel of the passed color

Since 1.0

cogl_color_get_alpha_byte ()

uint8_t
cogl_color_get_alpha_byte (const CoglColor *color);

Retrieves the alpha channel of color as a byte value between 0 and 255

Parameters

color a CoglColor

Returns

the alpha channel of the passed color

Since 1.0

cogl_color_get_red_float ()

float
cogl_color_get_red_float (const CoglColor *color);

Retrieves the red channel of color as a floating point value between 0.0 and 1.0

Parameters

color a CoglColor

Returns

the red channel of the passed color

Since 1.0

cogl_color_get_green_float ()

Cogl 2.0 Reference Manual 241 / 328

float
cogl_color_get_green_float (const CoglColor *color);

Retrieves the green channel of color as a floating point value between 0.0 and 1.0

Parameters

color a CoglColor

Returns

the green channel of the passed color

Since 1.0

cogl_color_get_blue_float ()

float
cogl_color_get_blue_float (const CoglColor *color);

Retrieves the blue channel of color as a floating point value between 0.0 and 1.0

Parameters

color a CoglColor

Returns

the blue channel of the passed color

Since 1.0

cogl_color_get_alpha_float ()

float
cogl_color_get_alpha_float (const CoglColor *color);

Retrieves the alpha channel of color as a floating point value between 0.0 and 1.0

Parameters

color a CoglColor

Returns

the alpha channel of the passed color

Since 1.0

cogl_color_set_red ()

Cogl 2.0 Reference Manual 242 / 328

void
cogl_color_set_red (CoglColor *color,

float red);

Sets the red channel of color to red .

Parameters

color a CoglColor

red a float value between 0.0f
and 1.0f

Since 1.4

cogl_color_set_green ()

void
cogl_color_set_green (CoglColor *color,

float green);

Sets the green channel of color to green .

Parameters

color a CoglColor

green a float value between 0.0f
and 1.0f

Since 1.4

cogl_color_set_blue ()

void
cogl_color_set_blue (CoglColor *color,

float blue);

Sets the blue channel of color to blue .

Parameters

color a CoglColor

blue a float value between 0.0f
and 1.0f

Since 1.4

cogl_color_set_alpha ()

void
cogl_color_set_alpha (CoglColor *color,

Cogl 2.0 Reference Manual 243 / 328

float alpha);

Sets the alpha channel of color to alpha .

Parameters

color a CoglColor

alpha a float value between 0.0f
and 1.0f

Since 1.4

cogl_color_set_red_byte ()

void
cogl_color_set_red_byte (CoglColor *color,

uint8_t red);

Sets the red channel of color to red .

Parameters

color a CoglColor

red a byte value between 0 and
255

Since 1.4

cogl_color_set_green_byte ()

void
cogl_color_set_green_byte (CoglColor *color,

uint8_t green);

Sets the green channel of color to green .

Parameters

color a CoglColor

green a byte value between 0 and
255

Since 1.4

cogl_color_set_blue_byte ()

void
cogl_color_set_blue_byte (CoglColor *color,

uint8_t blue);

Sets the blue channel of color to blue .

Cogl 2.0 Reference Manual 244 / 328

Parameters

color a CoglColor

blue a byte value between 0 and
255

Since 1.4

cogl_color_set_alpha_byte ()

void
cogl_color_set_alpha_byte (CoglColor *color,

uint8_t alpha);

Sets the alpha channel of color to alpha .

Parameters

color a CoglColor

alpha a byte value between 0 and
255

Since 1.4

cogl_color_set_red_float ()

void
cogl_color_set_red_float (CoglColor *color,

float red);

Sets the red channel of color to red .

Parameters

color a CoglColor

red a float value between 0.0f
and 1.0f

Since 1.4

cogl_color_set_green_float ()

void
cogl_color_set_green_float (CoglColor *color,

float green);

Sets the green channel of color to green .

Parameters

Cogl 2.0 Reference Manual 245 / 328

color a CoglColor

green a float value between 0.0f
and 1.0f

Since 1.4

cogl_color_set_blue_float ()

void
cogl_color_set_blue_float (CoglColor *color,

float blue);

Sets the blue channel of color to blue .

Parameters

color a CoglColor

blue a float value between 0.0f
and 1.0f

Since 1.4

cogl_color_set_alpha_float ()

void
cogl_color_set_alpha_float (CoglColor *color,

float alpha);

Sets the alpha channel of color to alpha .

Parameters

color a CoglColor

alpha a float value between 0.0f
and 1.0f

Since 1.4

cogl_color_premultiply ()

void
cogl_color_premultiply (CoglColor *color);

Converts a non-premultiplied color to a pre-multiplied color. For example, semi-transparent red is (1.0, 0, 0, 0.5) when non-
premultiplied and (0.5, 0, 0, 0.5) when premultiplied.

Parameters

color the color to premultiply

Cogl 2.0 Reference Manual 246 / 328

Since 1.0

cogl_color_unpremultiply ()

void
cogl_color_unpremultiply (CoglColor *color);

Converts a pre-multiplied color to a non-premultiplied color. For example, semi-transparent red is (0.5, 0, 0, 0.5) when premul-
tiplied and (1.0, 0, 0, 0.5) when non-premultiplied.

Parameters

color the color to unpremultiply

Since 1.4

cogl_color_equal ()

CoglBool
cogl_color_equal (const void *v1,

const void *v2);

Compares two CoglColors and checks if they are the same.

This function can be passed to g_hash_table_new() as the key_equal_func parameter, when using CoglColors as keys in a
GHashTable.

Parameters

v1 a CoglColor
v2 a CoglColor

Returns

TRUE if the two colors are the same.

Since 1.0

cogl_color_init_from_hsl ()

void
cogl_color_init_from_hsl (CoglColor *color,

float hue,
float saturation,
float luminance);

Converts a color expressed in HLS (hue, luminance and saturation) values into a CoglColor.

Parameters

color return location for a
CoglColor. [out]

Cogl 2.0 Reference Manual 247 / 328

hue hue value, in the 0 .. 360
range

saturation saturation value, in the 0 ..
1 range

luminance luminance value, in the 0 ..
1 range

Since 1.16

cogl_color_to_hsl ()

void
cogl_color_to_hsl (const CoglColor *color,

float *hue,
float *saturation,
float *luminance);

Converts color to the HLS format.

The hue value is in the 0 .. 360 range. The luminance and saturation values are in the 0 .. 1 range.

Parameters

color a CoglColor

hue return location for the hue
value or NULL. [out]

saturation return location for the
saturation value or NULL. [out]

luminance return location for the
luminance value or NULL. [out]

Since 1.16

Types and Values

struct CoglColor

struct CoglColor {
float red;
float green;
float blue;
float alpha;

};

A structure for holding a single color definition.

Members

float red;
amount
of
red

float green;
amount
of
green

Cogl 2.0 Reference Manual 248 / 328

float blue;
amount
of
green

float alpha; alpha

Since 1.0

1.12.2 Matrices

Matrices — Functions for initializing and manipulating 4x4 matrices

Functions

void cogl_matrix_init_identity ()
void cogl_matrix_init_from_array ()
void cogl_matrix_init_translation ()
void cogl_matrix_init_from_quaternion ()
void cogl_matrix_init_from_euler ()
CoglMatrix * cogl_matrix_copy ()
CoglBool cogl_matrix_equal ()
void cogl_matrix_free ()
void cogl_matrix_frustum ()
void cogl_matrix_orthographic ()
void cogl_matrix_perspective ()
void cogl_matrix_look_at ()
void cogl_matrix_multiply ()
void cogl_matrix_rotate ()
void cogl_matrix_rotate_quaternion ()
void cogl_matrix_rotate_euler ()
void cogl_matrix_translate ()
void cogl_matrix_scale ()
void cogl_matrix_transpose ()
const float * cogl_matrix_get_array ()
CoglBool cogl_matrix_get_inverse ()
void cogl_matrix_transform_point ()
void cogl_matrix_transform_points ()
void cogl_matrix_project_points ()
CoglBool cogl_matrix_is_identity ()

Types and Values

CoglMatrix

Description

Matrices are used in Cogl to describe affine model-view transforms, texture transforms, and projective transforms. This exposes
a utility API that can be used for direct manipulation of these matrices.

Functions

cogl_matrix_init_identity ()

Cogl 2.0 Reference Manual 249 / 328

void
cogl_matrix_init_identity (CoglMatrix *matrix);

Resets matrix to the identity matrix:

.xx=1; .xy=0; .xz=0; .xw=0;

.yx=0; .yy=1; .yz=0; .yw=0;

.zx=0; .zy=0; .zz=1; .zw=0;

.wx=0; .wy=0; .wz=0; .ww=1;

Parameters

matrix A 4x4 transformation
matrix

cogl_matrix_init_from_array ()

void
cogl_matrix_init_from_array (CoglMatrix *matrix,

const float *array);

Initializes matrix with the contents of array

Parameters

matrix A 4x4 transformation
matrix

array A linear array of 16 floats
(column-major order)

cogl_matrix_init_translation ()

void
cogl_matrix_init_translation (CoglMatrix *matrix,

float tx,
float ty,
float tz);

Resets matrix to the (tx, ty, tz) translation matrix:

.xx=1; .xy=0; .xz=0; .xw=tx;

.yx=0; .yy=1; .yz=0; .yw=ty;

.zx=0; .zy=0; .zz=1; .zw=tz;

.wx=0; .wy=0; .wz=0; .ww=1;

Parameters

matrix A 4x4 transformation
matrix

tx x coordinate of the
translation vector

ty y coordinate of the
translation vector

Cogl 2.0 Reference Manual 250 / 328

tz z coordinate of the
translation vector

Since 2.0

cogl_matrix_init_from_quaternion ()

void
cogl_matrix_init_from_quaternion (CoglMatrix *matrix,

const CoglQuaternion *quaternion);

Initializes matrix from a CoglQuaternion rotation.

Parameters

matrix A 4x4 transformation
matrix

quaternion A CoglQuaternion

cogl_matrix_init_from_euler ()

void
cogl_matrix_init_from_euler (CoglMatrix *matrix,

const CoglEuler *euler);

Initializes matrix from a CoglEuler rotation.

Parameters

matrix A 4x4 transformation
matrix

euler A CoglEuler

cogl_matrix_copy ()

CoglMatrix~*
cogl_matrix_copy (const CoglMatrix *matrix);

Allocates a new CoglMatrix on the heap and initializes it with the same values as matrix .

Parameters

matrix A 4x4 transformation
matrix you want to copy

Returns

A newly allocated CoglMatrix which should be freed using cogl_matrix_free().

[transfer full]

Since 1.6

Cogl 2.0 Reference Manual 251 / 328

cogl_matrix_equal ()

CoglBool
cogl_matrix_equal (const void *v1,

const void *v2);

Compares two matrices to see if they represent the same transformation. Although internally the matrices may have different
annotations associated with them and may potentially have a cached inverse matrix these are not considered in the comparison.

Parameters

v1 A 4x4 transformation
matrix

v2 A 4x4 transformation
matrix

Since 1.4

cogl_matrix_free ()

void
cogl_matrix_free (CoglMatrix *matrix);

Frees a CoglMatrix that was previously allocated via a call to cogl_matrix_copy().

Parameters

matrix A 4x4 transformation
matrix you want to free

Since 1.6

cogl_matrix_frustum ()

void
cogl_matrix_frustum (CoglMatrix *matrix,

float left,
float right,
float bottom,
float top,
float z_near,
float z_far);

Multiplies matrix by the given frustum perspective matrix.

Parameters

matrix A 4x4 transformation
matrix

left

X position of the left
clipping plane where it
intersects the near clipping
plane

Cogl 2.0 Reference Manual 252 / 328

right

X position of the right
clipping plane where it
intersects the near clipping
plane

bottom

Y position of the bottom
clipping plane where it
intersects the near clipping
plane

top

Y position of the top
clipping plane where it
intersects the near clipping
plane

z_near
The distance to the near
clipping plane (Must be
positive)

z_far
The distance to the far
clipping plane (Must be
positive)

cogl_matrix_orthographic ()

void
cogl_matrix_orthographic (CoglMatrix *matrix,

float x_1,
float y_1,
float x_2,
float y_2,
float near,
float far);

Multiplies matrix by a parallel projection matrix.

Parameters

matrix A 4x4 transformation
matrix

x_1 The x coordinate for the
first vertical clipping plane

y_1
The y coordinate for the
first horizontal clipping
plane

x_2
The x coordinate for the
second vertical clipping
plane

y_2
The y coordinate for the
second horizontal clipping
plane

near

The distance to the near
clipping plane (will be
negative if the plane is
behind the viewer)

far

The distance to the far
clipping plane (will be
negative if the plane is
behind the viewer)

Cogl 2.0 Reference Manual 253 / 328

Since 1.10

Stability Level: Unstable

cogl_matrix_perspective ()

void
cogl_matrix_perspective (CoglMatrix *matrix,

float fov_y,
float aspect,
float z_near,
float z_far);

Multiplies matrix by the described perspective matrix

Note You should be careful not to have to great a z_far / z_near ratio since that will reduce the effectiveness of depth testing
since there wont be enough precision to identify the depth of objects near to each other.

Parameters

matrix A 4x4 transformation
matrix

fov_y Vertical field of view angle
in degrees.

aspect The (width over height)
aspect ratio for display

z_near
The distance to the near
clipping plane (Must be
positive, and must not be 0)

z_far
The distance to the far
clipping plane (Must be
positive)

cogl_matrix_look_at ()

void
cogl_matrix_look_at (CoglMatrix *matrix,

float eye_position_x,
float eye_position_y,
float eye_position_z,
float object_x,
float object_y,
float object_z,
float world_up_x,
float world_up_y,
float world_up_z);

Applies a view transform matrix that positions the camera at the coordinate (eye_position_x , eye_position_y , eye_po
sition_z) looking towards an object at the coordinate (object_x , object_y , object_z). The top of the camera is aligned
to the given world up vector, which is normally simply (0, 1, 0) to map up to the positive direction of the y axis.

Because there is a lot of missleading documentation online for gluLookAt regarding the up vector we want to try and be a bit
clearer here.

The up vector should simply be relative to your world coordinates and does not need to change as you move the eye and object
positions. Many online sources may claim that the up vector needs to be perpendicular to the vector between the eye and object
position (partly because the man page is somewhat missleading) but that is not necessary for this function.

Cogl 2.0 Reference Manual 254 / 328

Note You should never look directly along the world-up vector.

Note It is assumed you are using a typical projection matrix where your origin maps to the center of your viewport.

Note Almost always when you use this function it should be the first transform applied to a new modelview transform

Parameters

matrix A 4x4 transformation
matrix

eye_position_x The X coordinate to look
from

eye_position_y The Y coordinate to look
from

eye_position_z The Z coordinate to look
from

object_x The X coordinate of the
object to look at

object_y The Y coordinate of the
object to look at

object_z The Z coordinate of the
object to look at

world_up_x The X component of the
world’s up direction vector

world_up_y The Y component of the
world’s up direction vector

world_up_z The Z component of the
world’s up direction vector

Since 1.8

Stability Level: Unstable

cogl_matrix_multiply ()

void
cogl_matrix_multiply (CoglMatrix *result,

const CoglMatrix *a,
const CoglMatrix *b);

Multiplies the two supplied matrices together and stores the resulting matrix inside result .

Note It is possible to multiply the a matrix in-place, so result can be equal to a but can’t be equal to b.

Parameters

result The address of a 4x4 matrix
to store the result in

Cogl 2.0 Reference Manual 255 / 328

a A 4x4 transformation
matrix

b A 4x4 transformation
matrix

cogl_matrix_rotate ()

void
cogl_matrix_rotate (CoglMatrix *matrix,

float angle,
float x,
float y,
float z);

Multiplies matrix with a rotation matrix that applies a rotation of angle degrees around the specified 3D vector.

Parameters

matrix A 4x4 transformation
matrix

angle The angle you want to
rotate in degrees

x X component of your
rotation vector

y Y component of your
rotation vector

z Z component of your
rotation vector

cogl_matrix_rotate_quaternion ()

void
cogl_matrix_rotate_quaternion (CoglMatrix *matrix,

const CoglQuaternion *quaternion);

Multiplies matrix with a rotation transformation described by the given CoglQuaternion.

Parameters

matrix A 4x4 transformation
matrix

quaternion A quaternion describing a
rotation

Since 2.0

cogl_matrix_rotate_euler ()

void
cogl_matrix_rotate_euler (CoglMatrix *matrix,

const CoglEuler *euler);

Multiplies matrix with a rotation transformation described by the given CoglEuler.

Cogl 2.0 Reference Manual 256 / 328

Parameters

matrix A 4x4 transformation
matrix

euler A euler describing a
rotation

Since 2.0

cogl_matrix_translate ()

void
cogl_matrix_translate (CoglMatrix *matrix,

float x,
float y,
float z);

Multiplies matrix with a transform matrix that translates along the X, Y and Z axis.

Parameters

matrix A 4x4 transformation
matrix

x The X translation you want
to apply

y The Y translation you want
to apply

z The Z translation you want
to apply

cogl_matrix_scale ()

void
cogl_matrix_scale (CoglMatrix *matrix,

float sx,
float sy,
float sz);

Multiplies matrix with a transform matrix that scales along the X, Y and Z axis.

Parameters

matrix A 4x4 transformation
matrix

sx The X scale factor
sy The Y scale factor
sz The Z scale factor

cogl_matrix_transpose ()

void
cogl_matrix_transpose (CoglMatrix *matrix);

Cogl 2.0 Reference Manual 257 / 328

Replaces matrix with its transpose. Ie, every element (i,j) in the new matrix is taken from element (j,i) in the old matrix.

Parameters

matrix A CoglMatrix

Since 1.10

cogl_matrix_get_array ()

const float~*
cogl_matrix_get_array (const CoglMatrix *matrix);

Casts matrix to a float array which can be directly passed to OpenGL.

Parameters

matrix A 4x4 transformation
matrix

Returns

a pointer to the float array

cogl_matrix_get_inverse ()

CoglBool
cogl_matrix_get_inverse (const CoglMatrix *matrix,

CoglMatrix *inverse);

Gets the inverse transform of a given matrix and uses it to initialize a new CoglMatrix.

Note Although the first parameter is annotated as const to indicate that the transform it represents isn’t modified this function
may technically save a copy of the inverse transform within the given CoglMatrix so that subsequent requests for the inverse
transform may avoid costly inversion calculations.

Parameters

matrix A 4x4 transformation
matrix

inverse
The destination for a 4x4
inverse transformation
matrix.

[out]

Returns

TRUE if the inverse was successfully calculated or FALSE for degenerate transformations that can’t be inverted (in this case the
inverse matrix will simply be initialized with the identity matrix)

Since 1.2

Cogl 2.0 Reference Manual 258 / 328

cogl_matrix_transform_point ()

void
cogl_matrix_transform_point (const CoglMatrix *matrix,

float *x,
float *y,
float *z,
float *w);

Transforms a point whos position is given and returned as four float components.

Parameters

matrix A 4x4 transformation
matrix

x The X component of your
points position. [inout]

y The Y component of your
points position. [inout]

z The Z component of your
points position. [inout]

w The W component of your
points position. [inout]

cogl_matrix_transform_points ()

void
cogl_matrix_transform_points (const CoglMatrix *matrix,

int n_components,
size_t stride_in,
const void *points_in,
size_t stride_out,
void *points_out,
int n_points);

Transforms an array of input points and writes the result to another array of output points. The input points can either have 2 or
3 components each. The output points always have 3 components. The output array can simply point to the input array to do the
transform in-place.

If you need to transform 4 component points see cogl_matrix_project_points().

Here’s an example with differing input/output strides:

typedef struct {
float x,y;
uint8_t r,g,b,a;
float s,t,p;

} MyInVertex;
typedef struct {

uint8_t r,g,b,a;
float x,y,z;

} MyOutVertex;
MyInVertex vertices[N_VERTICES];
MyOutVertex results[N_VERTICES];
CoglMatrix matrix;

my_load_vertices (vertices);
my_get_matrix (&matrix);

Cogl 2.0 Reference Manual 259 / 328

cogl_matrix_transform_points (&matrix,
2,
sizeof (MyInVertex),
&vertices[0].x,
sizeof (MyOutVertex),
&results[0].x,
N_VERTICES);

Parameters

matrix A transformation matrix

n_components
The number of position
components for each input
point. (either 2 or 3)

stride_in The stride in bytes between
input points.

points_in
A pointer to the first
component of the first input
point.

stride_out The stride in bytes between
output points.

points_out
A pointer to the first
component of the first
output point.

n_points The number of points to
transform.

Stability Level: Unstable

cogl_matrix_project_points ()

void
cogl_matrix_project_points (const CoglMatrix *matrix,

int n_components,
size_t stride_in,
const void *points_in,
size_t stride_out,
void *points_out,
int n_points);

Projects an array of input points and writes the result to another array of output points. The input points can either have 2, 3 or
4 components each. The output points always have 4 components (known as homogenous coordinates). The output array can
simply point to the input array to do the transform in-place.

Here’s an example with differing input/output strides:

typedef struct {
float x,y;
uint8_t r,g,b,a;
float s,t,p;

} MyInVertex;
typedef struct {

uint8_t r,g,b,a;
float x,y,z;

} MyOutVertex;
MyInVertex vertices[N_VERTICES];
MyOutVertex results[N_VERTICES];

Cogl 2.0 Reference Manual 260 / 328

CoglMatrix matrix;

my_load_vertices (vertices);
my_get_matrix (&matrix);

cogl_matrix_project_points (&matrix,
2,
sizeof (MyInVertex),
&vertices[0].x,
sizeof (MyOutVertex),
&results[0].x,
N_VERTICES);

Parameters

matrix A projection matrix

n_components
The number of position
components for each input
point. (either 2, 3 or 4)

stride_in The stride in bytes between
input points.

points_in
A pointer to the first
component of the first input
point.

stride_out The stride in bytes between
output points.

points_out
A pointer to the first
component of the first
output point.

n_points The number of points to
transform.

Stability Level: Unstable

cogl_matrix_is_identity ()

CoglBool
cogl_matrix_is_identity (const CoglMatrix *matrix);

Determines if the given matrix is an identity matrix.

Parameters

matrix A CoglMatrix

Returns

TRUE if matrix is an identity matrix else FALSE

Since 1.8

Cogl 2.0 Reference Manual 261 / 328

Types and Values

CoglMatrix

typedef struct {
/* column 0 */
float xx;
float yx;
float zx;
float wx;

/* column 1 */
float xy;
float yy;
float zy;
float wy;

/* column 2 */
float xz;
float yz;
float zz;
float wz;

/* column 3 */
float xw;
float yw;
float zw;
float ww;

} CoglMatrix;

A CoglMatrix holds a 4x4 transform matrix. This is a single precision, column-major matrix which means it is compatible with
what OpenGL expects.

A CoglMatrix can represent transforms such as, rotations, scaling, translation, sheering, and linear projections. You can combine
these transforms by multiplying multiple matrices in the order you want them applied.

The transformation of a vertex (x, y, z, w) by a CoglMatrix is given by:

x_new = xx * x + xy * y + xz * z + xw * w
y_new = yx * x + yy * y + yz * z + yw * w
z_new = zx * x + zy * y + zz * z + zw * w
w_new = wx * x + wy * y + wz * z + ww * w

Where w is normally 1

Note You must consider the members of the CoglMatrix structure read only, and all matrix modifications must be done via the
cogl_matrix API. This allows Cogl to annotate the matrices internally. Violation of this will give undefined results. If you need to
initialize a matrix with a constant other than the identity matrix you can use cogl_matrix_init_from_array().

1.12.3 Matrix Stacks

Matrix Stacks — Functions for efficiently tracking many related transformations

Functions

CoglMatrixStack * cogl_matrix_stack_new ()
void cogl_matrix_stack_push ()

Cogl 2.0 Reference Manual 262 / 328

void cogl_matrix_stack_pop ()
void cogl_matrix_stack_load_identity ()
void cogl_matrix_stack_scale ()
void cogl_matrix_stack_translate ()
void cogl_matrix_stack_rotate ()
void cogl_matrix_stack_rotate_quaternion ()
void cogl_matrix_stack_rotate_euler ()
void cogl_matrix_stack_multiply ()
void cogl_matrix_stack_frustum ()
void cogl_matrix_stack_perspective ()
void cogl_matrix_stack_orthographic ()
CoglBool cogl_matrix_stack_get_inverse ()
CoglMatrixEntry * cogl_matrix_stack_get_entry ()
CoglMatrix * cogl_matrix_stack_get ()
CoglMatrix * cogl_matrix_entry_get ()
void cogl_matrix_stack_set ()
CoglBool cogl_matrix_entry_calculate_translation ()
CoglBool cogl_matrix_entry_is_identity ()
CoglBool cogl_matrix_entry_equal ()
CoglMatrixEntry * cogl_matrix_entry_ref ()
void cogl_matrix_entry_unref ()

Types and Values

CoglMatrixStack
CoglMatrixEntry

Description

Matrices can be used (for example) to describe the model-view transforms of objects, texture transforms, and projective trans-
forms.

The CoglMatrix api provides a good way to manipulate individual matrices representing a single transformation but if you need
to track many-many such transformations for many objects that are organized in a scenegraph for example then using a separate
CoglMatrix for each object may not be the most efficient way.

A CoglMatrixStack enables applications to track lots of transformations that are related to each other in some kind of hierarchy.
In a scenegraph for example if you want to know how to transform a particular node then you usually have to walk up through
the ancestors and accumulate their transforms before finally applying the transform of the node itself. In this model things are
grouped together spatially according to their ancestry and all siblings with the same parent share the same initial transformation.
The CoglMatrixStack API is suited to tracking lots of transformations that fit this kind of model.

Compared to using the CoglMatrix api directly to track many related transforms, these can be some advantages to using a
CoglMatrixStack:

• Faster equality comparisons of transformations

• Efficient comparisons of the differences between arbitrary transformations

• Avoid redundant arithmetic related to common transforms

• Can be more space efficient (not always though)

For reference (to give an idea of when a CoglMatrixStack can provide a space saving) a CoglMatrix can be expected to take 72
bytes whereas a single CoglMatrixEntry in a CoglMatrixStack is currently around 32 bytes on a 32bit CPU or 36 bytes on a 64bit
CPU. An entry is needed for each individual operation applied to the stack (such as rotate, scale, translate) so if most of your
leaf node transformations only need one or two simple operations relative to their parent then a matrix stack will likely take less
space than having a CoglMatrix for each node.

Cogl 2.0 Reference Manual 263 / 328

Even without any space saving though the ability to perform fast comparisons and avoid redundant arithmetic (especially sine
and cosine calculations for rotations) can make using a matrix stack worthwhile.

Functions

cogl_matrix_stack_new ()

CoglMatrixStack~*
cogl_matrix_stack_new (CoglContext *ctx);

Allocates a new CoglMatrixStack that can be used to build up transformations relating to objects in a scenegraph like hierarchy.
(See the description of CoglMatrixStack and CoglMatrixEntry for more details of what a matrix stack is best suited for)

When a CoglMatrixStack is first allocated it is conceptually positioned at the root of your scenegraph hierarchy. As you traverse
your scenegraph then you should call cogl_matrix_stack_push() whenever you move down a level and cogl_matrix_stack_pop()
whenever you move back up a level towards the root.

Once you have allocated a CoglMatrixStack you can get a reference to the current transformation for the current position in the
hierarchy by calling cogl_matrix_stack_get_entry().

Once you have allocated a CoglMatrixStack you can apply operations such as rotate, scale and translate to modify the cur-
rent transform for the current position in the hierarchy by calling cogl_matrix_stack_rotate(), cogl_matrix_stack_scale() and
cogl_matrix_stack_translate().

Parameters

ctx A CoglContext

Returns

A newly allocated CoglMatrixStack.

[transfer full]

cogl_matrix_stack_push ()

void
cogl_matrix_stack_push (CoglMatrixStack *stack);

Saves the current transform and starts a new transform that derives from the current transform.

This is usually called while traversing a scenegraph whenever you traverse one level deeper. cogl_matrix_stack_pop() can then
be called when going back up one layer to restore the previous transform of an ancestor.

Parameters

stack A CoglMatrixStack

cogl_matrix_stack_pop ()

void
cogl_matrix_stack_pop (CoglMatrixStack *stack);

Restores the previous transform that was last saved by calling cogl_matrix_stack_push().

This is usually called while traversing a scenegraph whenever you return up one level in the graph towards the root node.

Cogl 2.0 Reference Manual 264 / 328

Parameters

stack A CoglMatrixStack

cogl_matrix_stack_load_identity ()

void
cogl_matrix_stack_load_identity (CoglMatrixStack *stack);

Resets the current matrix to the identity matrix.

Parameters

stack A CoglMatrixStack

cogl_matrix_stack_scale ()

void
cogl_matrix_stack_scale (CoglMatrixStack *stack,

float x,
float y,
float z);

Multiplies the current matrix by one that scales the x, y and z axes by the given values.

Parameters

stack A CoglMatrixStack

x Amount to scale along the
x-axis

y Amount to scale along the
y-axis

z Amount to scale along the
z-axis

cogl_matrix_stack_translate ()

void
cogl_matrix_stack_translate (CoglMatrixStack *stack,

float x,
float y,
float z);

Multiplies the current matrix by one that translates along all three axes according to the given values.

Parameters

stack A CoglMatrixStack

x Distance to translate along
the x-axis

y Distance to translate along
the y-axis

z Distance to translate along
the z-axis

Cogl 2.0 Reference Manual 265 / 328

cogl_matrix_stack_rotate ()

void
cogl_matrix_stack_rotate (CoglMatrixStack *stack,

float angle,
float x,
float y,
float z);

Multiplies the current matrix by one that rotates the around the axis-vector specified by x , y and z . The rotation follows the
right-hand thumb rule so for example rotating by 10 degrees about the axis-vector (0, 0, 1) causes a small counter-clockwise
rotation.

Parameters

stack A CoglMatrixStack
angle Angle in degrees to rotate.

x X-component of vertex to
rotate around.

y Y-component of vertex to
rotate around.

z Z-component of vertex to
rotate around.

cogl_matrix_stack_rotate_quaternion ()

void
cogl_matrix_stack_rotate_quaternion (CoglMatrixStack *stack,

const CoglQuaternion *quaternion);

Multiplies the current matrix by one that rotates according to the rotation described by quaternion .

Parameters

stack A CoglMatrixStack
quaternion A CoglQuaternion

cogl_matrix_stack_rotate_euler ()

void
cogl_matrix_stack_rotate_euler (CoglMatrixStack *stack,

const CoglEuler *euler);

Multiplies the current matrix by one that rotates according to the rotation described by euler .

Parameters

stack A CoglMatrixStack
euler A CoglEuler

cogl_matrix_stack_multiply ()

void

Cogl 2.0 Reference Manual 266 / 328

cogl_matrix_stack_multiply (CoglMatrixStack *stack,
const CoglMatrix *matrix);

Multiplies the current matrix by the given matrix.

Parameters

stack A CoglMatrixStack

matrix the matrix to multiply with
the current model-view

cogl_matrix_stack_frustum ()

void
cogl_matrix_stack_frustum (CoglMatrixStack *stack,

float left,
float right,
float bottom,
float top,
float z_near,
float z_far);

Replaces the current matrix with a perspective matrix for a given viewing frustum defined by 4 side clip planes that all cross
through the origin and 2 near and far clip planes.

Parameters

stack A CoglMatrixStack

left

X position of the left
clipping plane where it
intersects the near clipping
plane

right

X position of the right
clipping plane where it
intersects the near clipping
plane

bottom

Y position of the bottom
clipping plane where it
intersects the near clipping
plane

top

Y position of the top
clipping plane where it
intersects the near clipping
plane

z_near
The distance to the near
clipping plane (Must be
positive)

z_far
The distance to the far
clipping plane (Must be
positive)

cogl_matrix_stack_perspective ()

void

Cogl 2.0 Reference Manual 267 / 328

cogl_matrix_stack_perspective (CoglMatrixStack *stack,
float fov_y,
float aspect,
float z_near,
float z_far);

Replaces the current matrix with a perspective matrix based on the provided values.

Note You should be careful not to have too great a z_far / z_near ratio since that will reduce the effectiveness of depth
testing since there wont be enough precision to identify the depth of objects near to each other.

Parameters

stack A CoglMatrixStack

fov_y Vertical field of view angle
in degrees.

aspect The (width over height)
aspect ratio for display

z_near
The distance to the near
clipping plane (Must be
positive, and must not be 0)

z_far
The distance to the far
clipping plane (Must be
positive)

cogl_matrix_stack_orthographic ()

void
cogl_matrix_stack_orthographic (CoglMatrixStack *stack,

float x_1,
float y_1,
float x_2,
float y_2,
float near,
float far);

Replaces the current matrix with an orthographic projection matrix.

Parameters

stack A CoglMatrixStack

x_1 The x coordinate for the
first vertical clipping plane

y_1
The y coordinate for the
first horizontal clipping
plane

x_2
The x coordinate for the
second vertical clipping
plane

y_2
The y coordinate for the
second horizontal clipping
plane

Cogl 2.0 Reference Manual 268 / 328

near

The distance to the near
clipping plane (will be
negative if the plane is
behind the viewer)

far

The distance to the far
clipping plane (will be
negative if the plane is
behind the viewer)

cogl_matrix_stack_get_inverse ()

CoglBool
cogl_matrix_stack_get_inverse (CoglMatrixStack *stack,

CoglMatrix *inverse);

Gets the inverse transform of the current matrix and uses it to initialize a new CoglMatrix.

Parameters

stack A CoglMatrixStack

inverse
The destination for a 4x4
inverse transformation
matrix.

[out]

Returns

TRUE if the inverse was successfully calculated or FALSE for degenerate transformations that can’t be inverted (in this case the
inverse matrix will simply be initialized with the identity matrix)

cogl_matrix_stack_get_entry ()

CoglMatrixEntry~*
cogl_matrix_stack_get_entry (CoglMatrixStack *stack);

Gets a reference to the current transform represented by a CoglMatrixEntry pointer.

Note The transform represented by a CoglMatrixEntry is immutable.

Note CoglMatrixEntrys are reference counted using cogl_matrix_entry_ref() and cogl_matrix_entry_unref() and you should call
cogl_matrix_entry_unref() when you are finished with and entry you get via cogl_matrix_stack_get_entry().

Parameters

stack A CoglMatrixStack

Returns

A pointer to the CoglMatrixEntry representing the current matrix stack transform.

[transfer none]

Cogl 2.0 Reference Manual 269 / 328

cogl_matrix_stack_get ()

CoglMatrix~*
cogl_matrix_stack_get (CoglMatrixStack *stack,

CoglMatrix *matrix);

Resolves the current stack transform into a CoglMatrix by combining the operations that have been applied to build up the
current transform.

There are two possible ways that this function may return its result depending on whether the stack is able to directly point to an
internal CoglMatrix or whether the result needs to be composed of multiple operations.

If an internal matrix contains the required result then this function will directly return a pointer to that matrix, otherwise if the
function returns NULL then matrix will be initialized to match the current transform of stack .

Note matrix will be left untouched if a direct pointer is returned.

Parameters

stack A CoglMatrixStack

matrix The potential destination
for the current matrix. [out]

Returns

A direct pointer to the current transform or NULL and in that case matrix will be initialized with the value of the current
transform.

cogl_matrix_entry_get ()

CoglMatrix~*
cogl_matrix_entry_get (CoglMatrixEntry *entry,

CoglMatrix *matrix);

Resolves the current entry transform into a CoglMatrix by combining the sequence of operations that have been applied to build
up the current transform.

There are two possible ways that this function may return its result depending on whether it’s possible to directly point to an
internal CoglMatrix or whether the result needs to be composed of multiple operations.

If an internal matrix contains the required result then this function will directly return a pointer to that matrix, otherwise if the
function returns NULL then matrix will be initialized to match the transform of entry .

Note matrix will be left untouched if a direct pointer is returned.

Parameters

entry A CoglMatrixEntry

matrix
The potential destination
for the transform as a
matrix.

[out]

Cogl 2.0 Reference Manual 270 / 328

Returns

A direct pointer to a CoglMatrix transform or NULL and in that case matrix will be initialized with the effective transform
represented by entry .

cogl_matrix_stack_set ()

void
cogl_matrix_stack_set (CoglMatrixStack *stack,

const CoglMatrix *matrix);

Replaces the current stack matrix value with the value of matrix . This effectively discards any other operations that were
applied since the last time cogl_matrix_stack_push() was called or since the stack was initialized.

Parameters

stack A CoglMatrixStack

matrix A CoglMatrix replace the
current matrix value with

cogl_matrix_entry_calculate_translation ()

CoglBool
cogl_matrix_entry_calculate_translation

(CoglMatrixEntry *entry0,
CoglMatrixEntry *entry1,
float *x,
float *y,
float *z);

Determines if the only difference between two transforms is a translation and if so returns what the x , y , and z components of
the translation are.

If the difference between the two translations involves anything other than a translation then the function returns FALSE.

Parameters

entry0 The first reference
transform

entry1 A second reference
transform

x
The destination for the
x-component of the
translation.

[out]

y
The destination for the
y-component of the
translation.

[out]

z
The destination for the
z-component of the
translation.

[out]

Returns

TRUE if the only difference between the transform of entry0 and the transform of entry1 is a translation, otherwise FALSE.

Cogl 2.0 Reference Manual 271 / 328

cogl_matrix_entry_is_identity ()

CoglBool
cogl_matrix_entry_is_identity (CoglMatrixEntry *entry);

Determines whether entry is known to represent an identity transform.

If this returns TRUE then the entry is definitely the identity matrix. If it returns FALSE it may or may not be the identity matrix
but no expensive comparison is performed to verify it.

Parameters

entry A CoglMatrixEntry

Returns

TRUE if entry is definitely an identity transform, otherwise FALSE.

cogl_matrix_entry_equal ()

CoglBool
cogl_matrix_entry_equal (CoglMatrixEntry *entry0,

CoglMatrixEntry *entry1);

Compares two arbitrary CoglMatrixEntry transforms for equality returning TRUE if they are equal or FALSE otherwise.

Note In many cases it is unnecessary to use this api and instead direct pointer comparisons of entries are good enough and
much cheaper too.

Parameters

entry0 The first CoglMatrixEntry
to compare

entry1 A second CoglMatrixEntry
to compare

Returns

TRUE if entry0 represents the same transform as entry1 , otherwise FALSE.

cogl_matrix_entry_ref ()

CoglMatrixEntry~*
cogl_matrix_entry_ref (CoglMatrixEntry *entry);

Takes a reference on the given entry to ensure the entry stays alive and remains valid. When you are finished with the entry
then you should call cogl_matrix_entry_unref().

It is an error to pass an entry pointer to cogl_object_ref() and cogl_object_unref()

Parameters

Cogl 2.0 Reference Manual 272 / 328

entry A CoglMatrixEntry

cogl_matrix_entry_unref ()

void
cogl_matrix_entry_unref (CoglMatrixEntry *entry);

Releases a reference on entry either taken by calling cogl_matrix_entry_unref() or to release the reference given when calling
cogl_matrix_stack_get_entry().

Parameters

entry A CoglMatrixEntry

Types and Values

CoglMatrixStack

typedef struct _CoglMatrixStack CoglMatrixStack;

Tracks your current position within a hierarchy and lets you build up a graph of transformations as you traverse through a
hierarchy such as a scenegraph.

A CoglMatrixStack always maintains a reference to a single transformation at any point in time, representing the transformation at
the current position in the hierarchy. You can get a reference to the current transformation by calling cogl_matrix_stack_get_entry().

When a CoglMatrixStack is first created with cogl_matrix_stack_new() then it is conceptually positioned at the root of your
hierarchy and the current transformation simply represents an identity transformation.

As you traverse your object hierarchy (your scenegraph) then you should call cogl_matrix_stack_push() whenever you move
down one level and call cogl_matrix_stack_pop() whenever you move back up one level towards the root.

At any time you can apply a set of operations, such as "rotate", "scale", "translate" on top of the current transformation of a
CoglMatrixStack using functions such as cogl_matrix_stack_rotate(), cogl_matrix_stack_scale() and cogl_matrix_stack_translate().
These operations will derive a new current transformation and will never affect a transformation that you have referenced using
cogl_matrix_stack_get_entry().

Internally applying operations to a CoglMatrixStack builds up a graph of CoglMatrixEntry structures which each represent a
single immutable transform.

CoglMatrixEntry

typedef struct _CoglMatrixEntry CoglMatrixEntry;

Represents a single immutable transformation that was retrieved from a CoglMatrixStack using cogl_matrix_stack_get_entry().

Internally a CoglMatrixEntry represents a single matrix operation (such as "rotate", "scale", "translate") which is applied to the
transform of a single parent entry.

Using the CoglMatrixStack api effectively builds up a graph of these immutable CoglMatrixEntry structures whereby operations
that can be shared between multiple transformations will result in shared CoglMatrixEntry nodes in the graph.

When a CoglMatrixStack is first created it references one CoglMatrixEntry that represents a single "load identity" operation.
This serves as the root entry and all operations that are then applied to the stack will extend the graph starting from this root "load
identity" entry.

Given the typical usage model for a CoglMatrixStack and the way the entries are built up while traversing a scenegraph then
in most cases where an application is interested in comparing two transformations for equality then it is enough to simply
compare two CoglMatrixEntry pointers directly. Technically this can lead to false negatives that could be identified with a deeper
comparison but often these false negatives are unlikely and don’t matter anyway so this enables extremely cheap comparisons.

Cogl 2.0 Reference Manual 273 / 328

Note CoglMatrixEntrys are reference counted using cogl_matrix_entry_ref() and cogl_matrix_entry_unref() not with
cogl_object_ref() and cogl_object_unref().

1.12.4 3 Component Vectors

3 Component Vectors — Functions for handling single precision float vectors.

Functions

void cogl_vector3_init ()
void cogl_vector3_init_zero ()
CoglBool cogl_vector3_equal ()
CoglBool cogl_vector3_equal_with_epsilon ()
float * cogl_vector3_copy ()
void cogl_vector3_free ()
void cogl_vector3_invert ()
void cogl_vector3_add ()
void cogl_vector3_subtract ()
void cogl_vector3_multiply_scalar ()
void cogl_vector3_divide_scalar ()
void cogl_vector3_normalize ()
float cogl_vector3_magnitude ()
void cogl_vector3_cross_product ()
float cogl_vector3_dot_product ()
float cogl_vector3_distance ()

Description

This exposes a utility API that can be used for basic manipulation of 3 component float vectors.

Functions

cogl_vector3_init ()

void
cogl_vector3_init (float *vector,

float x,
float y,
float z);

Initializes a 3 component, single precision float vector which can then be manipulated with the cogl_vector convenience APIs.
Vectors can also be used in places where a "point" is often desired.

Parameters

vector The 3 component vector
you want to initialize

x The x component
y The y component
z The z component

Cogl 2.0 Reference Manual 274 / 328

Since 1.4

Stability Level: Unstable

cogl_vector3_init_zero ()

void
cogl_vector3_init_zero (float *vector);

Initializes a 3 component, single precision float vector with zero for each component.

Parameters

vector The 3 component vector
you want to initialize

Since 1.4

Stability Level: Unstable

cogl_vector3_equal ()

CoglBool
cogl_vector3_equal (const void *v1,

const void *v2);

Compares the components of two vectors and returns TRUE if they are the same.

The comparison of the components is done with the ’==’ operator such that -0 is considered equal to 0, but otherwise there is no
fuzziness such as an epsilon to consider vectors that are essentially identical except for some minor precision error differences
due to the way they have been manipulated.

Parameters

v1 The first 3 component
vector you want to compare

v2 The second 3 component
vector you want to compare

Returns

TRUE if the vectors are equal else FALSE.

Since 1.4

Stability Level: Unstable

cogl_vector3_equal_with_epsilon ()

CoglBool
cogl_vector3_equal_with_epsilon (const float *vector0,

const float *vector1,
float epsilon);

Cogl 2.0 Reference Manual 275 / 328

Compares the components of two vectors using the given epsilon and returns TRUE if they are the same, using an internal epsilon
for comparing the floats.

Each component is compared against the epsilon value in this way:

if (fabsf (vector0->x - vector1->x) < epsilon)

Parameters

vector0 The first 3 component
vector you want to compare

vector1 The second 3 component
vector you want to compare

epsilon
The allowable difference
between components to still
be considered equal

Returns

TRUE if the vectors are equal else FALSE.

Since 1.4

Stability Level: Unstable

cogl_vector3_copy ()

float~*
cogl_vector3_copy (const float *vector);

Allocates a new 3 component float vector on the heap initializing the components from the given vector and returns a pointer
to the newly allocated vector. You should free the memory using cogl_vector3_free()

Parameters

vector The 3 component vector
you want to copy

Returns

A newly allocated 3 component float vector

Since 1.4

Stability Level: Unstable

cogl_vector3_free ()

void
cogl_vector3_free (float *vector);

Frees a 3 component vector that was previously allocated with cogl_vector3_copy()

Parameters

Cogl 2.0 Reference Manual 276 / 328

vector The 3 component you want
to free

Since 1.4

Stability Level: Unstable

cogl_vector3_invert ()

void
cogl_vector3_invert (float *vector);

Inverts/negates all the components of the given vector .

Parameters

vector The 3 component vector
you want to manipulate

Since 1.4

Stability Level: Unstable

cogl_vector3_add ()

void
cogl_vector3_add (float *result,

const float *a,
const float *b);

Adds each of the corresponding components in vectors a and b storing the results in result .

Parameters

result Where you want the result
written

a The first vector operand
b The second vector operand

Since 1.4

Stability Level: Unstable

cogl_vector3_subtract ()

void
cogl_vector3_subtract (float *result,

const float *a,
const float *b);

Subtracts each of the corresponding components in vector b from a storing the results in result .

Parameters

Cogl 2.0 Reference Manual 277 / 328

result Where you want the result
written

a The first vector operand
b The second vector operand

Since 1.4

Stability Level: Unstable

cogl_vector3_multiply_scalar ()

void
cogl_vector3_multiply_scalar (float *vector,

float scalar);

Multiplies each of the vector components by the given scalar.

Parameters

vector The 3 component vector
you want to manipulate

scalar
The scalar you want to
multiply the vector
components by

Since 1.4

Stability Level: Unstable

cogl_vector3_divide_scalar ()

void
cogl_vector3_divide_scalar (float *vector,

float scalar);

Divides each of the vector components by the given scalar.

Parameters

vector The 3 component vector
you want to manipulate

scalar
The scalar you want to
divide the vector
components by

Since 1.4

Stability Level: Unstable

cogl_vector3_normalize ()

void
cogl_vector3_normalize (float *vector);

Cogl 2.0 Reference Manual 278 / 328

Updates the vector so it is a "unit vector" such that the vector s magnitude or length is equal to 1.

Note It’s safe to use this function with the [0, 0, 0] vector, it will not try to divide components by 0 (its norm) and will leave the
vector untouched.

Parameters

vector The 3 component vector
you want to manipulate

Since 1.4

Stability Level: Unstable

cogl_vector3_magnitude ()

float
cogl_vector3_magnitude (const float *vector);

Calculates the scalar magnitude or length of vector .

Parameters

vector The 3 component vector
you want the magnitude for

Returns

The magnitude of vector .

Since 1.4

Stability Level: Unstable

cogl_vector3_cross_product ()

void
cogl_vector3_cross_product (float *result,

const float *u,
const float *v);

Calculates the cross product between the two vectors u and v .

The cross product is a vector perpendicular to both u and v . This can be useful for calculating the normal of a polygon by
creating two vectors in its plane using the polygons vertices and taking their cross product.

If the two vectors are parallel then the cross product is 0.

You can use a right hand rule to determine which direction the perpendicular vector will point: If you place the two vectors tail, to
tail and imagine grabbing the perpendicular line that extends through the common tail with your right hand such that you fingers
rotate in the direction from u to v then the resulting vector points along your extended thumb.

Parameters

Cogl 2.0 Reference Manual 279 / 328

result Where you want the result
written

u Your first 3 component
vector

v Your second 3 component
vector

Returns

The cross product between two vectors u and v .

Since 1.4

Stability Level: Unstable

cogl_vector3_dot_product ()

float
cogl_vector3_dot_product (const float *a,

const float *b);

Calculates the dot product of the two 3 component vectors. This can be used to determine the magnitude of one vector projected
onto another. (for example a surface normal)

For example if you have a polygon with a given normal vector and some other point for which you want to calculate its distance
from the polygon, you can create a vector between one of the polygon vertices and that point and use the dot product to calculate
the magnitude for that vector but projected onto the normal of the polygon. This way you don’t just get the distance from the
point to the edge of the polygon you get the distance from the point to the nearest part of the polygon.

Note If you don’t use a unit length normal in the above example then you would then also have to divide the result by the
magnitude of the normal

The dot product is calculated as:

(a->x * b->x + a->y * b->y + a->z * b->z)

For reference, the dot product can also be calculated from the angle between two vectors as:

|a||b|cos𝜃

Parameters

a Your first 3 component
vector

b Your second 3 component
vector

Returns

The dot product of two vectors.

Since 1.4

Stability Level: Unstable

Cogl 2.0 Reference Manual 280 / 328

cogl_vector3_distance ()

float
cogl_vector3_distance (const float *a,

const float *b);

If you consider the two given vectors as (x,y,z) points instead then this will compute the distance between those two points.

Parameters

a The first point
b The second point

Returns

The distance between two points given as 3 component vectors.

Since 1.4

Stability Level: Unstable

Types and Values

1.12.5 Eulers (Rotations)

Eulers (Rotations) — Functions for initializing and manipulating euler angles.

Functions

void cogl_euler_init ()
void cogl_euler_init_from_matrix ()
void cogl_euler_init_from_quaternion ()
CoglBool cogl_euler_equal ()
CoglEuler * cogl_euler_copy ()
void cogl_euler_free ()

Types and Values

CoglEuler

Description

Euler angles are a simple representation of a 3 dimensional rotation; comprised of 3 ordered heading, pitch and roll rotations. An
important thing to understand is that the axis of rotation belong to the object being rotated and so they also rotate as each of the
heading, pitch and roll rotations are applied.

One way to consider euler angles is to imagine controlling an aeroplane, where you first choose a heading (Such as flying south
east), then you set the pitch (such as 30 degrees to take off) and then you might set a roll, by dipping the left, wing as you prepare
to turn.

They have some advantages and limitations that it helps to be aware of:

Advantages:

• Easy to understand and use, compared to quaternions and matrices, so may be a good choice for a user interface.

Cogl 2.0 Reference Manual 281 / 328

• Efficient storage, needing only 3 components any rotation can be represented.

Note Actually the CoglEuler type isn’t optimized for size because we may cache the equivalent CoglQuaternion along with
a euler rotation, but it would be trivial for an application to track the components of euler rotations in a packed float array if
optimizing for size was important. The values could be passed to Cogl only when manipulation is necessary.

Disadvantages:

• Aliasing: it’s possible to represent some rotations with multiple different heading, pitch and roll rotations.

• They can suffer from a problem called Gimbal Lock. A good explanation of this can be seen on wikipedia here: http://en.wikipedia.org/wiki/Gimbal_lock
but basically two of the axis of rotation may become aligned and so you loose a degree of freedom. For example a pitch of
+-90° would mean that heading and bank rotate around the same axis.

• If you use euler angles to orient something in 3D space and try to transition between orientations by interpolating the component
angles you probably wont get the transitions you expect as they may not follow the shortest path between the two orientations.

• There’s no standard to what order the component axis rotations are applied. The most common convention seems to be what
we do in Cogl with heading (y-axis), pitch (x-axis) and then roll (z-axis), but other software might apply x-axis, y-axis then
z-axis or any other order so you need to consider this if you are accepting euler rotations from some other software. Other
software may also use slightly different aeronautical terms, such as "yaw" instead of "heading" or "bank" instead of "roll".

To minimize the aliasing issue we may refer to "Canonical Euler" angles where heading and roll are restricted to +- 180° and
pitch is restricted to +- 90°. If pitch is +- 90° bank is set to 0°.

Quaternions don’t suffer from Gimbal Lock and they can be nicely interpolated between, their disadvantage is that they don’t
have an intuitive representation.

A common practice is to accept angles in the intuitive Euler form and convert them to quaternions internally to avoid Gimbal
Lock and handle interpolations. See cogl_quaternion_init_from_euler().

Functions

cogl_euler_init ()

void
cogl_euler_init (CoglEuler *euler,

float heading,
float pitch,
float roll);

Initializes euler to represent a rotation of x_angle degrees around the x axis, then y_angle degrees around the y_axis and
z_angle degrees around the z axis.

Parameters

euler The CoglEuler angle to
initialize

heading Angle to rotate around an
object’s y axis

pitch Angle to rotate around an
object’s x axis

roll Angle to rotate around an
object’s z axis

Cogl 2.0 Reference Manual 282 / 328

Since 2.0

cogl_euler_init_from_matrix ()

void
cogl_euler_init_from_matrix (CoglEuler *euler,

const CoglMatrix *matrix);

Extracts a euler rotation from the given matrix and initializses euler with the component x, y and z rotation angles.

Parameters

euler The CoglEuler angle to
initialize

matrix
A CoglMatrix containing a
rotation, but no scaling,
mirroring or skewing.

cogl_euler_init_from_quaternion ()

void
cogl_euler_init_from_quaternion (CoglEuler *euler,

const CoglQuaternion *quaternion);

Initializes a euler rotation with the equivalent rotation represented by the given quaternion .

Parameters

euler The CoglEuler angle to
initialize

quaternion A CoglEuler with the
rotation to initialize with

cogl_euler_equal ()

CoglBool
cogl_euler_equal (const void *v1,

const void *v2);

Compares the two given euler angles v1 and v1 and it they are equal returns TRUE else FALSE.

Note This function only checks that all three components rotations are numerically equal, it does not consider that some
rotations can be represented with different component rotations

Parameters

v1 The first euler angle to
compare

v2 The second euler angle to
compare

Cogl 2.0 Reference Manual 283 / 328

Returns

TRUE if v1 and v2 are equal else FALSE.

Since 2.0

cogl_euler_copy ()

CoglEuler~*
cogl_euler_copy (const CoglEuler *src);

Allocates a new CoglEuler and initilizes it with the component angles of src . The newly allocated euler should be freed using
cogl_euler_free().

Parameters

src A CoglEuler to copy

Returns

A newly allocated CoglEuler

Since 2.0

cogl_euler_free ()

void
cogl_euler_free (CoglEuler *euler);

Frees a CoglEuler that was previously allocated using cogl_euler_copy().

Parameters

euler A CoglEuler allocated via
cogl_euler_copy()

Since 2.0

Types and Values

CoglEuler

typedef struct {
float heading;
float pitch;
float roll;

} CoglEuler;

Represents an ordered rotation first of heading degrees around an object’s y axis, then pitch degrees around an object’s x axis
and finally roll degrees around an object’s z axis.

Note It’s important to understand the that axis are associated with the object being rotated, so the axis also rotate in sequence
with the rotations being applied.

Cogl 2.0 Reference Manual 284 / 328

The members of a CoglEuler can be initialized, for example, with cogl_euler_init() and cogl_euler_init_from_quaternion().

You may also want to look at cogl_quaternion_init_from_euler() if you want to do interpolation between 3d rotations.

Members

float heading;

Angle
to
ro-
tate
around
an
ob-
ject’s
y
axis

float pitch;

Angle
to
ro-
tate
around
an
ob-
ject’s
x
axis

float roll;

Angle
to
ro-
tate
around
an
ob-
ject’s
z
axis

Since 2.0

1.12.6 Quaternions (Rotations)

Quaternions (Rotations) — Functions for initializing and manipulating quaternions.

Functions

void cogl_quaternion_init_identity ()
void cogl_quaternion_init ()
void cogl_quaternion_init_from_angle_vector ()
void cogl_quaternion_init_from_array ()
void cogl_quaternion_init_from_x_rotation ()
void cogl_quaternion_init_from_y_rotation ()
void cogl_quaternion_init_from_z_rotation ()
void cogl_quaternion_init_from_euler ()
CoglBool cogl_quaternion_equal ()

Cogl 2.0 Reference Manual 285 / 328

CoglQuaternion * cogl_quaternion_copy ()
void cogl_quaternion_free ()
float cogl_quaternion_get_rotation_angle ()
void cogl_quaternion_get_rotation_axis ()
void cogl_quaternion_normalize ()
float cogl_quaternion_dot_product ()
void cogl_quaternion_invert ()
void cogl_quaternion_multiply ()
void cogl_quaternion_pow ()
void cogl_quaternion_slerp ()
void cogl_quaternion_nlerp ()
void cogl_quaternion_squad ()
const CoglQuaternion * cogl_get_static_identity_quaternion ()
const CoglQuaternion * cogl_get_static_zero_quaternion ()

Types and Values

CoglQuaternion

Description

Quaternions have become a standard form for representing 3D rotations and have some nice properties when compared with
other representation such as (roll,pitch,yaw) Euler angles. They can be used to interpolate between different rotations and they
don’t suffer from a problem called "Gimbal lock" where two of the axis of rotation may become aligned and you loose a degree
of freedom. .

Functions

cogl_quaternion_init_identity ()

void
cogl_quaternion_init_identity (CoglQuaternion *quaternion);

Initializes the quaternion with the canonical quaternion identity [1 (0, 0, 0)] which represents no rotation. Multiplying a quater-
nion with this identity leaves the quaternion unchanged.

You might also want to consider using cogl_get_static_identity_quaternion().

Parameters

quaternion An uninitialized
CoglQuaternion

Since 2.0

cogl_quaternion_init ()

void
cogl_quaternion_init (CoglQuaternion *quaternion,

float angle,
float x,
float y,
float z);

http://en.wikipedia.org/wiki/Gimbal_lock

Cogl 2.0 Reference Manual 286 / 328

Initializes a quaternion that rotates angle degrees around the axis vector (x , y , z). The axis vector does not need to be
normalized.

Parameters

quaternion An uninitialized
CoglQuaternion

angle The angle you want to
rotate around the given axis

x
The x component of your
axis vector about which you
want to rotate.

y
The y component of your
axis vector about which you
want to rotate.

z
The z component of your
axis vector about which you
want to rotate.

Returns

A normalized, unit quaternion representing an orientation rotated angle degrees around the axis vector (x , y , z)

Since 2.0

cogl_quaternion_init_from_angle_vector ()

void
cogl_quaternion_init_from_angle_vector

(CoglQuaternion *quaternion,
float angle,
const float *axis3f);

Initializes a quaternion that rotates angle degrees around the given axis vector. The axis vector does not need to be normalized.

Parameters

quaternion An uninitialized
CoglQuaternion

angle The angle to rotate around
axis3f

axis3f
your 3 component axis
vector about which you
want to rotate.

Returns

A normalized, unit quaternion representing an orientation rotated angle degrees around the given axis vector.

Since 2.0

cogl_quaternion_init_from_array ()

void

Cogl 2.0 Reference Manual 287 / 328

cogl_quaternion_init_from_array (CoglQuaternion *quaternion,
const float *array);

Initializes a [w (x, y,z)] quaternion directly from an array of 4 floats: [w,x,y,z].

Parameters

quaternion A CoglQuaternion

array An array of 4 floats
w,(x,y,z)

Since 2.0

cogl_quaternion_init_from_x_rotation ()

void
cogl_quaternion_init_from_x_rotation (CoglQuaternion *quaternion,

float angle);

XXX: check which direction this rotates

Parameters

quaternion An uninitialized
CoglQuaternion

angle The angle to rotate around
the x axis

Since 2.0

cogl_quaternion_init_from_y_rotation ()

void
cogl_quaternion_init_from_y_rotation (CoglQuaternion *quaternion,

float angle);

Parameters

quaternion An uninitialized
CoglQuaternion

angle The angle to rotate around
the y axis

Since 2.0

cogl_quaternion_init_from_z_rotation ()

void
cogl_quaternion_init_from_z_rotation (CoglQuaternion *quaternion,

float angle);

Cogl 2.0 Reference Manual 288 / 328

Parameters

quaternion An uninitialized
CoglQuaternion

angle The angle to rotate around
the z axis

Since 2.0

cogl_quaternion_init_from_euler ()

void
cogl_quaternion_init_from_euler (CoglQuaternion *quaternion,

const CoglEuler *euler);

Parameters

quaternion A CoglQuaternion

euler A CoglEuler with which to
initialize the quaternion

Since 2.0

cogl_quaternion_equal ()

CoglBool
cogl_quaternion_equal (const void *v1,

const void *v2);

Compares that all the components of quaternions a and b are equal.

An epsilon value is not used to compare the float components, but the == operator is at least used so that 0 and -0 are considered
equal.

Parameters

v1 A CoglQuaternion
v2 A CoglQuaternion

Returns

TRUE if the quaternions are equal else FALSE.

Since 2.0

cogl_quaternion_copy ()

CoglQuaternion~*
cogl_quaternion_copy (const CoglQuaternion *src);

Allocates a new CoglQuaternion on the stack and initializes it with the same values as src .

Cogl 2.0 Reference Manual 289 / 328

Parameters

src A CoglQuaternion

Returns

A newly allocated CoglQuaternion which should be freed using cogl_quaternion_free()

Since 2.0

cogl_quaternion_free ()

void
cogl_quaternion_free (CoglQuaternion *quaternion);

Frees a CoglQuaternion that was previously allocated via cogl_quaternion_copy().

Parameters

quaternion A CoglQuaternion

Since 2.0

cogl_quaternion_get_rotation_angle ()

float
cogl_quaternion_get_rotation_angle (const CoglQuaternion *quaternion);

Parameters

quaternion A CoglQuaternion

Since 2.0

cogl_quaternion_get_rotation_axis ()

void
cogl_quaternion_get_rotation_axis (const CoglQuaternion *quaternion,

float *vector3);

Parameters

quaternion A CoglQuaternion
vector3 an allocated 3-float array. [out]

Since 2.0

cogl_quaternion_normalize ()

Cogl 2.0 Reference Manual 290 / 328

void
cogl_quaternion_normalize (CoglQuaternion *quaternion);

Parameters

quaternion A CoglQuaternion

Since 2.0

cogl_quaternion_dot_product ()

float
cogl_quaternion_dot_product (const CoglQuaternion *a,

const CoglQuaternion *b);

Parameters

a A CoglQuaternion
b A CoglQuaternion

Since 2.0

cogl_quaternion_invert ()

void
cogl_quaternion_invert (CoglQuaternion *quaternion);

Parameters

quaternion A CoglQuaternion

Since 2.0

cogl_quaternion_multiply ()

void
cogl_quaternion_multiply (CoglQuaternion *result,

const CoglQuaternion *left,
const CoglQuaternion *right);

This combines the rotations of two quaternions into result . The operation is not commutative so the order is important because
AxB != BxA. Cogl follows the standard convention for quaternions here so the rotations are applied right to left . This is
similar to the combining of matrices.

Note It is possible to multiply the a quaternion in-place, so result can be equal to a but can’t be equal to b.

Cogl 2.0 Reference Manual 291 / 328

Parameters

Cogl 2.0 Reference Manual 292 / 328

result The destination
CoglQuaternion

left The second CoglQuaternion
rotation to apply

right The first CoglQuaternion
rotation to apply

Since 2.0

cogl_quaternion_pow ()

void
cogl_quaternion_pow (CoglQuaternion *quaternion,

float exponent);

Parameters

quaternion A CoglQuaternion
exponent the exponent

Since 2.0

cogl_quaternion_slerp ()

void
cogl_quaternion_slerp (CoglQuaternion *result,

const CoglQuaternion *a,
const CoglQuaternion *b,
float t);

Performs a spherical linear interpolation between two quaternions.

Noteable properties:

• commutative: No

• constant velocity: Yes

• torque minimal (travels along the surface of the 4-sphere): Yes

• more expensive than cogl_quaternion_nlerp()

Parameters

result The destination
CoglQuaternion

a The first CoglQuaternion
b The second CoglQuaternion

t
The factor in the range [0,1]
used to interpolate between
quaternion a and b .

cogl_quaternion_nlerp ()

Cogl 2.0 Reference Manual 293 / 328

void
cogl_quaternion_nlerp (CoglQuaternion *result,

const CoglQuaternion *a,
const CoglQuaternion *b,
float t);

Performs a normalized linear interpolation between two quaternions. That is it does a linear interpolation of the quaternion
components and then normalizes the result. This will follow the shortest arc between the two orientations (just like the slerp()
function) but will not progress at a constant speed. Unlike slerp() nlerp is commutative which is useful if you are blending
animations together. (I.e. nlerp (tmp, a, b) followed by nlerp (result, tmp, d) is the same as nlerp (tmp, a, d) followed by nlerp
(result, tmp, b)). Finally nlerp is cheaper than slerp so it can be a good choice if you don’t need the constant speed property of
the slerp() function.

Notable properties:

• commutative: Yes

• constant velocity: No

• torque minimal (travels along the surface of the 4-sphere): Yes

• faster than cogl_quaternion_slerp()

Parameters

result The destination
CoglQuaternion

a The first CoglQuaternion
b The second CoglQuaternion

t
The factor in the range [0,1]
used to interpolate between
quaterion a and b .

cogl_quaternion_squad ()

void
cogl_quaternion_squad (CoglQuaternion *result,

const CoglQuaternion *prev,
const CoglQuaternion *a,
const CoglQuaternion *b,
const CoglQuaternion *next,
float t);

Parameters

result The destination
CoglQuaternion

prev A CoglQuaternion used
before a

a The first CoglQuaternion
b The second CoglQuaternion

next A CoglQuaternion that will
be used after b

t
The factor in the range [0,1]
used to interpolate between
quaternion a and b .

Cogl 2.0 Reference Manual 294 / 328

Since 2.0

cogl_get_static_identity_quaternion ()

const CoglQuaternion~*
cogl_get_static_identity_quaternion (void);

Returns a pointer to a singleton quaternion constant describing the canonical identity [1 (0, 0, 0)] which represents no rotation.

If you multiply a quaternion with the identity quaternion you will get back the same value as the original quaternion.

Returns

A pointer to an identity quaternion

Since 2.0

cogl_get_static_zero_quaternion ()

const CoglQuaternion~*
cogl_get_static_zero_quaternion (void);

Returns

a pointer to a singleton quaternion constant describing a rotation of 180 degrees around a degenerate axis: [0 (0, 0, 0)]

Since 2.0

Types and Values

CoglQuaternion

typedef struct {
float w;

float x;
float y;
float z;

} CoglQuaternion;

A quaternion is comprised of a scalar component and a 3D vector component. The scalar component is normally referred to as
w and the vector might either be referred to as v or a (for axis) or expanded with the individual components: (x, y, z) A full
quaternion would then be written as [w (x, y, z)].

Quaternions can be considered to represent an axis and angle pair although sadly these numbers are buried somewhat under some
maths...

For the curious you can see here that a given axis (a) and angle (𝜃) pair are represented in a quaternion as follows:

[w=cos(𝜃/2) (x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a. ←↩
x)]

Unit Quaternions: When using Quaternions to represent spatial orientations for 3D graphics it’s always assumed you have a unit
quaternion. The magnitude of a quaternion is defined as:

sqrt (w2 + x2 + y2 + z2)

Cogl 2.0 Reference Manual 295 / 328

and a unit quaternion satisfies this equation:

w2 + x2 + y2 + z2 = 1

Thankfully most of the time we don’t actually have to worry about the maths that goes on behind the scenes but if you are curious
to learn more here are some external references:

• http://mathworld.wolfram.com/Quaternion.html

• http://www.gamedev.net/reference/articles/article1095.asp

• http://www.cprogramming.com/tutorial/3d/quaternions.html

• http://www.isner.com/tutorials/quatSpells/quaternion_spells_12.htm

• 3D Maths Primer for Graphics and Game Development ISBN-10: 1556229119

• http://www.cs.caltech.edu/courses/cs171/quatut.pdf

• http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56

Members

float w ;

based
on
the
an-
gle
of
ro-
ta-
tion
it
is
cos(𝜃/2)

float x;

based
on
the
an-
gle
of
ro-
ta-
tion
and
x
com-
po-
nent
of
the
axis
of
ro-
ta-
tion
it
is
sin(𝜃/2)*axis.x

http://mathworld.wolfram.com/Quaternion.html
http://www.gamedev.net/reference/articles/article1095.asp
http://www.cprogramming.com/tutorial/3d/quaternions.html
http://www.isner.com/tutorials/quatSpells/quaternion_spells_12.htm
http://www.cs.caltech.edu/courses/cs171/quatut.pdf
http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56

Cogl 2.0 Reference Manual 296 / 328

float y;

based
on
the
an-
gle
of
ro-
ta-
tion
and
y
com-
po-
nent
of
the
axis
of
ro-
ta-
tion
it
is
sin(𝜃/2)*axis.y

float z;

based
on
the
an-
gle
of
ro-
ta-
tion
and
z
com-
po-
nent
of
the
axis
of
ro-
ta-
tion
it
is
sin(𝜃/2)*axis.z

1.12.7 GPU synchronisation fences

GPU synchronisation fences — Functions for notification of command completion

Functions

Cogl 2.0 Reference Manual 297 / 328

void (*CoglFenceCallback) ()
void * cogl_fence_closure_get_user_data ()
CoglFenceClosure * cogl_framebuffer_add_fence_callback ()
void cogl_framebuffer_cancel_fence_callback ()

Types and Values

CoglFence
CoglFenceClosure

Description

Cogl allows notification of GPU command completion; users may mark points in the GPU command stream and receive notifi-
cation when the GPU has executed to that point.

Functions

CoglFenceCallback ()

void
(*CoglFenceCallback) (CoglFence *fence,

void *user_data);

The callback prototype used with cogl_framebuffer_add_fence_callback() for notification of GPU command completion.

Parameters

fence

Unused. In the future this
parameter may be used to
pass extra information
about the fence completion
but for now it should be
ignored.

user_data The private data passed to
cogl_framebuffer_add_fence_callback()

Since 2.0

Stability Level: Unstable

cogl_fence_closure_get_user_data ()

void~*
cogl_fence_closure_get_user_data (CoglFenceClosure *closure);

cogl_framebuffer_add_fence_callback ()

CoglFenceClosure~*
cogl_framebuffer_add_fence_callback (CoglFramebuffer *framebuffer,

CoglFenceCallback callback,
void *user_data);

Cogl 2.0 Reference Manual 298 / 328

Calls the provided callback when all previously-submitted commands have been executed by the GPU.

Returns non-NULL if the fence succeeded, or NULL if it was unable to be inserted and the callback will never be called. The
user does not need to free the closure; it will be freed automatically when the callback is called, or cancelled.

Parameters

framebuffer
The CoglFramebuffer the
commands have been
submitted to

callback

A CoglFenceCallback to be
called when all commands
submitted to Cogl have
been executed.

[scope notified]

user_data Private data that will be
passed to the callback. [closure]

Since 2.0

Stability Level: Unstable

cogl_framebuffer_cancel_fence_callback ()

void
cogl_framebuffer_cancel_fence_callback

(CoglFramebuffer *framebuffer,
CoglFenceClosure *closure);

Removes a fence previously submitted with cogl_framebuffer_add_fence_callback(); the callback will not be called.

Parameters

framebuffer
The CoglFramebuffer the
commands were submitted
to

closure
The CoglFenceClosure
returned from
cogl_framebuffer_add_fence_callback()

Since 2.0

Stability Level: Unstable

Types and Values

CoglFence

typedef struct _CoglFence CoglFence;

An opaque object representing a fence. This type is currently unused but in the future may be used to pass extra information
about the fence completion.

Since 2.0

Stability Level: Unstable

Cogl 2.0 Reference Manual 299 / 328

CoglFenceClosure

typedef struct _CoglFenceClosure CoglFenceClosure;

An opaque type representing one future callback to be made when the GPU command stream has passed a certain point.

Since 2.0

Stability Level: Unstable

1.12.8 Versioning utility macros

Versioning utility macros — Macros for determining the version of Cogl being used

Functions

#define COGL_VERSION_ENCODE()
#define COGL_VERSION_CHECK()
#define COGL_VERSION_GET_MAJOR()
#define COGL_VERSION_GET_MINOR()
#define COGL_VERSION_GET_MICRO()

Types and Values

#define COGL_VERSION_MAJOR
#define COGL_VERSION_MINOR
#define COGL_VERSION_MICRO
#define COGL_VERSION_STRING
#define COGL_VERSION

Description

Cogl offers a set of macros for checking the version of the library at compile time.

Functions

COGL_VERSION_ENCODE()

#define COGL_VERSION_ENCODE(major, minor, micro)

Encodes a 3 part version number into a single integer. This can be used to compare the Cogl version. For example if there is a
known bug in Cogl versions between 1.3.2 and 1.3.4 you could use the following code to provide a workaround:

#if COGL_VERSION >= COGL_VERSION_ENCODE (1, 3, 2) && \
COGL_VERSION <= COGL_VERSION_ENCODE (1, 3, 4)

/<!-- -->* Do the workaround *<!-- -->/
#endif

Parameters

major The major part of a version
number

Cogl 2.0 Reference Manual 300 / 328

minor The minor part of a version
number

micro The micro part of a version
number

Since 1.12.0

COGL_VERSION_CHECK()

#define COGL_VERSION_CHECK(major, minor, micro)

A convenient macro to check whether the Cogl version being compiled against is at least the given version number. For example
if the function cogl_pipeline_frobnicate was added in version 2.0.1 and you want to conditionally use that function when it is
available, you could write the following:

#if COGL_VERSION_CHECK (2, 0, 1)
cogl_pipeline_frobnicate (pipeline);
#else
/<!-- -->* Frobnication is not supported. Use a red color instead *<!-- -->/
cogl_pipeline_set_color_4f (pipeline, 1.0f, 0.0f, 0.0f, 1.0f);
#endif

Parameters

major The major part of a version
number

minor The minor part of a version
number

micro The micro part of a version
number

Returns

TRUE if the Cogl version being compiled against is greater than or equal to the given three part version number.

Since 1.12.0

COGL_VERSION_GET_MAJOR()

#define COGL_VERSION_GET_MAJOR(version)

Extracts the major part of an encoded version number.

Parameters

version An encoded version number

Since 1.12.0

COGL_VERSION_GET_MINOR()

#define COGL_VERSION_GET_MINOR(version)

Cogl 2.0 Reference Manual 301 / 328

Extracts the minor part of an encoded version number.

Parameters

version An encoded version number

Since 1.12.0

COGL_VERSION_GET_MICRO()

#define COGL_VERSION_GET_MICRO(version)

Extracts the micro part of an encoded version number.

Parameters

version An encoded version number

Since 1.12.0

Types and Values

COGL_VERSION_MAJOR

#define COGL_VERSION_MAJOR COGL_VERSION_MAJOR_INTERNAL

The major version of the Cogl library (1, if COGL_VERSION is 1.2.3)

Since 1.12.0

COGL_VERSION_MINOR

#define COGL_VERSION_MINOR COGL_VERSION_MINOR_INTERNAL

The minor version of the Cogl library (2, if COGL_VERSION is 1.2.3)

Since 1.12.0

COGL_VERSION_MICRO

#define COGL_VERSION_MICRO COGL_VERSION_MICRO_INTERNAL

The micro version of the Cogl library (3, if COGL_VERSION is 1.2.3)

Since 1.12.0

COGL_VERSION_STRING

#define COGL_VERSION_STRING COGL_VERSION_STRING_INTERNAL

The full version of the Cogl library, in string form (suited for string concatenation)

Since 1.12.0

Cogl 2.0 Reference Manual 302 / 328

COGL_VERSION

#define COGL_VERSION

The Cogl version encoded into a single integer using the COGL_VERSION_ENCODE() macro. This can be used for quick
comparisons with particular versions.

Since 1.12.0

1.13 Binding and Integrating

1.13.1 SDL Integration

SDL Integration — Integration api for the Simple DirectMedia Layer library.

Functions

CoglContext * cogl_sdl_context_new ()
void cogl_sdl_renderer_set_event_type ()
int cogl_sdl_renderer_get_event_type ()
void cogl_sdl_handle_event ()
void cogl_sdl_idle ()
SDL_Window * cogl_sdl_onscreen_get_window ()

Description

Cogl is a portable graphics api that can either be used standalone or alternatively integrated with certain existing frameworks.
This api enables Cogl to be used in conjunction with the Simple DirectMedia Layer library.

Using this API a typical SDL application would look something like this:

MyAppData data;
CoglError *error = NULL;

data.ctx = cogl_sdl_context_new (SDL_USEREVENT, &error);
if (!data.ctx)

{
fprintf (stderr, "Failed to create context: %s\n",

error->message);
return 1;

}

my_application_setup (&data);

data.redraw_queued = TRUE;
while (!data.quit)

{
while (!data.quit)

{
if (!SDL_PollEvent (&event))
{

if (data.redraw_queued)
break;

cogl_sdl_idle (ctx);
if (!SDL_WaitEvent (&event))
{

Cogl 2.0 Reference Manual 303 / 328

fprintf (stderr, "Error waiting for SDL events");
return 1;

}
}

handle_event (&data, &event);
cogl_sdl_handle_event (ctx, &event);

}

data.redraw_queued = redraw (&data);
}

Functions

cogl_sdl_context_new ()

CoglContext~*
cogl_sdl_context_new (int type,

CoglError **error);

This is a convenience function for creating a new CoglContext for use with SDL and specifying what SDL user event type Cogl
can use as a way to interrupt SDL_WaitEvent().

This function is equivalent to the following code:

CoglRenderer *renderer = cogl_renderer_new ();
CoglDisplay *display;

cogl_renderer_set_winsys_id (renderer, COGL_WINSYS_ID_SDL);

cogl_sdl_renderer_set_event_type (renderer, type);

if (!cogl_renderer_connect (renderer, error))
return NULL;

display = cogl_display_new (renderer, NULL);
if (!cogl_display_setup (display, error))

return NULL;

return cogl_context_new (display, error);

Note SDL applications are required to either use this API or to manually create a CoglRenderer and call
cogl_sdl_renderer_set_event_type().

Parameters

type

An SDL user event type
between
SDL_USEREVENT and
SDL_NUMEVENTS - 1

error A CoglError return
location.

Since 2.0

Cogl 2.0 Reference Manual 304 / 328

Stability Level: Unstable

cogl_sdl_renderer_set_event_type ()

void
cogl_sdl_renderer_set_event_type (CoglRenderer *renderer,

int type);

Tells Cogl what SDL user event type it can use as a way to interrupt SDL_WaitEvent() to ensure that cogl_sdl_handle_event()
will be called in a finite amount of time.

Note This should only be called on an un-connected renderer.

Note For convenience most simple applications can use cogl_sdl_context_new() if they don’t want to manually create CoglRen-
derer and CoglDisplay objects during initialization.

Parameters

renderer A CoglRenderer

type

An SDL user event type
between
SDL_USEREVENT and
SDL_NUMEVENTS - 1

Since 2.0

Stability Level: Unstable

cogl_sdl_renderer_get_event_type ()

int
cogl_sdl_renderer_get_event_type (CoglRenderer *renderer);

Queries what SDL user event type Cogl is using as a way to interrupt SDL_WaitEvent(). This is set either using cogl_sdl_context_new
or by using cogl_sdl_renderer_set_event_type().

Parameters

renderer A CoglRenderer

Since 2.0

Stability Level: Unstable

cogl_sdl_handle_event ()

void
cogl_sdl_handle_event (CoglContext *context,

SDL_Event *event);

Cogl 2.0 Reference Manual 305 / 328

Passes control to Cogl so that it may dispatch any internal event callbacks in response to the given SDL event . This function
must be called for every SDL event.

Parameters

context A CoglContext
event An SDL event

Since 2.0

Stability Level: Unstable

cogl_sdl_idle ()

void
cogl_sdl_idle (CoglContext *context);

Notifies Cogl that the application is idle and about to call SDL_WaitEvent(). Cogl may use this to run low priority book keeping
tasks.

Parameters

context A CoglContext

Since 2.0

Stability Level: Unstable

cogl_sdl_onscreen_get_window ()

SDL_Window~*
cogl_sdl_onscreen_get_window (CoglOnscreen *onscreen);

Parameters

onscreen A CoglOnscreen

Returns

the underlying SDL_Window associated with an onscreen framebuffer.

Since 2.0

Stability Level: Unstable

Types and Values

1.13.2 Main loop integration

Main loop integration — Functions for integrating Cogl with an application’s main loop

Cogl 2.0 Reference Manual 306 / 328

Functions

Cogl 2.0 Reference Manual 307 / 328

int cogl_poll_renderer_get_info ()
void cogl_poll_renderer_dispatch ()
GSource * cogl_glib_source_new ()
GSource * cogl_glib_renderer_source_new ()

Types and Values

enum CoglPollFDEvent
CoglPollFD

Description

Cogl needs to integrate with the application’s main loop so that it can internally handle some events from the driver. All Cogl
applications must use these functions. They provide enough information to describe the state that Cogl will need to wake up on.
An application using the GLib main loop can instead use cogl_glib_source_new() which provides a GSource ready to be added
to the main loop.

Functions

cogl_poll_renderer_get_info ()

int
cogl_poll_renderer_get_info (CoglRenderer *renderer,

CoglPollFD **poll_fds,
int *n_poll_fds,
int64_t *timeout);

Is used to integrate Cogl with an application mainloop that is based on the unix poll(2) api (or select() or something equivalent).
This api should be called whenever an application is about to go idle so that Cogl has a chance to describe what file descriptor
events it needs to be woken up for.

Note If your application is using the Glib mainloop then you should jump to the cogl_glib_source_new() api as a more convenient
way of integrating Cogl with the mainloop.

After the function is called *poll_fds will contain a pointer to an array of CoglPollFD structs describing the file descriptors
that Cogl expects. The fd and events members will be updated accordingly. After the application has completed its idle it is
expected to either update the revents members directly in this array or to create a copy of the array and update them there.

When the application mainloop returns from calling poll(2) (or its equivalent) then it should call cogl_poll_renderer_dispatch()
passing a pointer the array of CoglPollFDs with updated revent values.

When using the COGL_WINSYS_ID_WGL winsys (where file descriptors don’t make any sense) or COGL_WINSYS_ID_SDL
(where the event handling functions of SDL don’t allow blocking on a file descriptor) *n_poll_fds is guaranteed to be zero.

timeout will contain a maximum amount of time to wait in microseconds before the application should wake up or -1 if the
application should wait indefinitely. This can also be 0 if Cogl needs to be woken up immediately.

Parameters

renderer A CoglRenderer

poll_fds
A return location for a
pointer to an array of
CoglPollFDs

Cogl 2.0 Reference Manual 308 / 328

n_poll_fds
A return location for the
number of entries in
*poll_fds

timeout

A return location for the
maximum length of time to
wait in microseconds, or -1
to wait indefinitely.

Returns

A "poll fd state age" that changes whenever the set of poll_fds has changed. If this API is being used to integrate with another
system mainloop api then knowing if the set of file descriptors and events has really changed can help avoid redundant work
depending the api. The age isn’t guaranteed to change when the timeout changes.

Since 1.16

Stability Level: Unstable

cogl_poll_renderer_dispatch ()

void
cogl_poll_renderer_dispatch (CoglRenderer *renderer,

const CoglPollFD *poll_fds,
int n_poll_fds);

This should be called whenever an application is woken up from going idle in its main loop. The poll_fds array should contain
a list of file descriptors matched with the events that occurred in revents. The events field is ignored. It is safe to pass in extra file
descriptors that Cogl didn’t request when calling cogl_poll_renderer_get_info() or a shorter array missing some file descriptors
that Cogl requested.

Note If your application didn’t originally create a CoglRenderer manually then you can easily get a CoglRenderer pointer by
calling cogl_get_renderer().

Parameters

renderer A CoglRenderer

poll_fds

An array of CoglPollFDs
describing the events that
have occurred since the
application went idle.

n_poll_fds The length of the
poll_fds array.

Since 1.16

Stability Level: Unstable

cogl_glib_source_new ()

GSource~*
cogl_glib_source_new (CoglContext *context,

int priority);

Cogl 2.0 Reference Manual 309 / 328

Creates a GSource which handles Cogl’s internal system event processing. This can be used as a convenience instead of
cogl_poll_renderer_get_info() and cogl_poll_renderer_dispatch() in applications that are already using the GLib main loop.
After this is called the GSource should be attached to the main loop using g_source_attach().

Applications that manually connect to a CoglRenderer before they create a CoglContext should instead use cogl_glib_renderer_source_new()
so that events may be dispatched before a context has been created. In that case you don’t need to use this api in addition later, it
is simply enough to use cogl_glib_renderer_source_new() instead.

Note This api is actually just a thin convenience wrapper around cogl_glib_renderer_source_new()

Parameters

context A CoglContext
priority The priority of the GSource

Returns

a new GSource

Since 1.10

Stability Level: Unstable

cogl_glib_renderer_source_new ()

GSource~*
cogl_glib_renderer_source_new (CoglRenderer *renderer,

int priority);

Creates a GSource which handles Cogl’s internal system event processing. This can be used as a convenience instead of
cogl_poll_renderer_get_info() and cogl_poll_renderer_dispatch() in applications that are already using the GLib main loop.
After this is called the GSource should be attached to the main loop using g_source_attach().

Parameters

renderer A CoglRenderer
priority The priority of the GSource

Returns

a new GSource

Since 1.16

Stability Level: Unstable

Types and Values

enum CoglPollFDEvent

A bitmask of events that Cogl may need to wake on for a file descriptor. Note that these all have the same values as the
corresponding defines for the poll function call on Unix so they may be directly passed to poll.

Cogl 2.0 Reference Manual 310 / 328

Members

Cogl 2.0 Reference Manual 311 / 328

COGL_POLL_FD_EVENT_IN

there
is
data
to
read

COGL_POLL_FD_EVENT_PRI

data
can
be
writ-
ten
(with-
out
block-
ing)

COGL_POLL_FD_EVENT_OUT

there
is
ur-
gent
data
to
read.

COGL_POLL_FD_EVENT_ERR

error
con-
di-
tion

COGL_POLL_FD_EVENT_HUP

hung
up
(the
con-
nec-
tion
has
been
bro-
ken,
usu-
ally
for
pipes
and
sock-
ets).

COGL_POLL_FD_EVENT_NVAL

invalid
re-
quest.
The
file
de-
scrip-
tor
is
not
open.

Since 1.10

Stability Level: Unstable

Cogl 2.0 Reference Manual 312 / 328

CoglPollFD

typedef struct {
int fd;
short int events;
short int revents;

} CoglPollFD;

A struct for describing the state of a file descriptor that Cogl needs to block on. The events field contains a bitmask of
CoglPollFDEvents that should cause the application to wake up. After the application is woken up from idle it should pass back
an array of CoglPollFDs to Cogl and update the revents mask to the actual events that occurred on the file descriptor.

Note that CoglPollFD is deliberately exactly the same as struct pollfd on Unix so that it can simply be cast when calling poll.

Members

int fd;

The
file
de-
scrip-
tor
to
block
on

short int events;

A
bit-
mask
of
events
to
block
on

short int revents;

A
bit-
mask
of
re-
turned
events

Since 1.10

Stability Level: Unstable

1.13.3 GType Integration API

GType Integration API —

Functions

GType cogl_gtype_matrix_get_type ()

Cogl 2.0 Reference Manual 313 / 328

Description

Functions

cogl_gtype_matrix_get_type ()

GType
cogl_gtype_matrix_get_type (void);

Returns

the GType for the registered "CoglMatrix" boxed type. This can be used for example to define GObject properties that accept a
CoglMatrix value.

Types and Values

1.13.4 GLES 2.0 context

GLES 2.0 context — A portable api to access OpenGLES 2.0

Functions

#define COGL_GLES2_CONTEXT_ERROR
CoglGLES2Context * cogl_gles2_context_new ()
CoglBool cogl_is_gles2_context ()
const CoglGLES2Vtable * cogl_gles2_context_get_vtable ()
CoglBool cogl_push_gles2_context ()
void cogl_pop_gles2_context ()
CoglGLES2Vtable * cogl_gles2_get_current_vtable ()
CoglTexture2D * cogl_gles2_texture_2d_new_from_handle ()
CoglBool cogl_gles2_texture_get_handle ()

Types and Values

CoglGLES2Context
struct CoglGLES2Vtable
enum CoglGLES2ContextError

Description

Cogl provides portable access to the OpenGLES api through a single library that is able to smooth over inconsistencies between
the different vendor drivers for OpenGLES in a single place.

The api is designed to allow Cogl to transparently implement the api on top of other drivers, such as OpenGL, D3D or on Cogl’s
own drawing api so even if your platform doesn’t come with an OpenGLES 2.0 api Cogl may still be able to expose the api to
your application.

Since Cogl is a library and not an api specification it is possible to add OpenGLES 2.0 api features to Cogl which can immidiately
benefit developers regardless of what platform they are running on.

With this api it’s possible to re-use existing OpenGLES 2.0 code within applications that are rendering with the Cogl API and
also it’s possible for applications that render using OpenGLES 2.0 to incorporate content rendered with Cogl.

Applications can check for OpenGLES 2.0 api support by checking for COGL_FEATURE_ID_GLES2_CONTEXT support with
cogl_has_feature().

Cogl 2.0 Reference Manual 314 / 328

Functions

COGL_GLES2_CONTEXT_ERROR

#define COGL_GLES2_CONTEXT_ERROR (_cogl_gles2_context_error_domain ())

An error domain for runtime exceptions relating to the cogl_gles2_context api.

Since 2.0

Stability Level: Unstable

cogl_gles2_context_new ()

CoglGLES2Context~*
cogl_gles2_context_new (CoglContext *ctx,

CoglError **error);

Allocates a new OpenGLES 2.0 context that can be used to render to CoglOffscreen framebuffers (Rendering to CoglOnscreen
framebuffers is not currently supported).

To actually access the OpenGLES 2.0 api itself you need to use cogl_gles2_context_get_vtable(). You should not try to directly
link to and use the symbols provided by the a system OpenGLES 2.0 driver.

Once you have allocated an OpenGLES 2.0 context you can make it current using cogl_push_gles2_context(). For those familiar
with using the EGL api, this serves a similar purpose to eglMakeCurrent.

Note Before using this api applications can check for OpenGLES 2.0 api support by checking for
COGL_FEATURE_ID_GLES2_CONTEXT support with cogl_has_feature(). This function will return FALSE and return
an COGL_GLES2_CONTEXT_ERROR_UNSUPPORTED error if the feature isn’t available.

Parameters

ctx A CoglContext

error A pointer to a CoglError for
returning exceptions

Returns

A newly allocated CoglGLES2Context or NULL if there was an error and error will be updated in that case.

Since 2.0

Stability Level: Unstable

cogl_is_gles2_context ()

CoglBool
cogl_is_gles2_context (void *object);

Gets whether the given object references a CoglGLES2Context.

Parameters

object A CoglObject pointer

Cogl 2.0 Reference Manual 315 / 328

Returns

TRUE if the object references a CoglGLES2Context and FALSE otherwise.

Since 2.0

Stability Level: Unstable

cogl_gles2_context_get_vtable ()

const CoglGLES2Vtable~*
cogl_gles2_context_get_vtable (CoglGLES2Context *gles2_ctx);

Queries the OpenGLES 2.0 api function pointers that should be used for rendering with the given gles2_ctx .

Note You should not try to directly link to and use the symbols provided by any system OpenGLES 2.0 driver.

Parameters

gles2_ctx
A CoglGLES2Context
allocated with
cogl_gles2_context_new()

Returns

A pointer to a CoglGLES2Vtable providing pointers to functions for the full OpenGLES 2.0 api.

Since 2.0

Stability Level: Unstable

cogl_push_gles2_context ()

CoglBool
cogl_push_gles2_context (CoglContext *ctx,

CoglGLES2Context *gles2_ctx,
CoglFramebuffer *read_buffer,
CoglFramebuffer *write_buffer,
CoglError **error);

Pushes the given gles2_ctx onto a stack associated with ctx so that the OpenGLES 2.0 api can be used instead of the Cogl
rendering apis to read and write to the specified framebuffers.

Usage of the api available through a CoglGLES2Vtable is only allowed between cogl_push_gles2_context() and cogl_pop_gles2_context()
calls.

If there is a runtime problem with switching over to the given gles2_ctx then this function will return FALSE and return an
error through error .

Parameters

ctx A CoglContext

gles2_ctx
A CoglGLES2Context
allocated with
cogl_gles2_context_new()

Cogl 2.0 Reference Manual 316 / 328

read_buffer

A CoglFramebuffer to
access to read operations
such as glReadPixels. (must
be a CoglOffscreen
framebuffer currently)

write_buffer

A CoglFramebuffer to
access for drawing
operations such as
glDrawArrays. (must be a
CoglOffscreen framebuffer
currently)

error A pointer to a CoglError for
returning exceptions

Returns

TRUE if operation was successfull or FALSE otherwise and error will be updated.

Since 2.0

Stability Level: Unstable

cogl_pop_gles2_context ()

void
cogl_pop_gles2_context (CoglContext *ctx);

Restores the previously active CoglGLES2Context if there were nested calls to cogl_push_gles2_context() or otherwise restores
the ability to render with the Cogl api instead of OpenGLES 2.0.

The behaviour is undefined if calls to cogl_pop_gles2_context() are not balenced with the number of corresponding calls to
cogl_push_gles2_context().

Parameters

ctx A CoglContext

Since 2.0

Stability Level: Unstable

cogl_gles2_get_current_vtable ()

CoglGLES2Vtable~*
cogl_gles2_get_current_vtable (void);

Returns the OpenGL ES 2.0 api vtable for the currently pushed CoglGLES2Context (last pushed with cogl_push_gles2_context())
or NULL if no CoglGLES2Context has been pushed.

Returns

The CoglGLES2Vtable for the currently pushed CoglGLES2Context or NULL if none has been pushed.

Since 2.0

Stability Level: Unstable

Cogl 2.0 Reference Manual 317 / 328

cogl_gles2_texture_2d_new_from_handle ()

CoglTexture2D~*
cogl_gles2_texture_2d_new_from_handle (CoglContext *ctx,

CoglGLES2Context *gles2_ctx,
unsigned int handle,
int width,
int height,
CoglPixelFormat format);

Creates a CoglTexture2D from an OpenGL ES 2.0 texture handle that was created within the given gles2_ctx via glGenTex-
tures(). The texture needs to have been associated with the GL_TEXTURE_2D target.

Note This interface is only intended for sharing textures to read from. The behaviour is undefined if the texture is modified using
the Cogl api.

Note Applications should only pass this function handles that were created via a CoglGLES2Vtable or via libcogl-gles2 and not
pass handles created directly using the system’s native libGLESv2 api.

Parameters

ctx A CoglContext

gles2_ctx
A CoglGLES2Context
allocated with
cogl_gles2_context_new()

handle
An OpenGL ES 2.0 texture
handle created with
glGenTextures()

width Width of the texture to
allocate

height Height of the texture to
allocate

format The format of the texture

Since 2.0

Stability Level: Unstable

cogl_gles2_texture_get_handle ()

CoglBool
cogl_gles2_texture_get_handle (CoglTexture *texture,

unsigned int *handle,
unsigned int *target);

Gets an OpenGL ES 2.0 texture handle for a CoglTexture that can then be referenced by a CoglGLES2Context. As well as
returning a texture handle the texture’s target (such as GL_TEXTURE_2D) is also returned.

If the CoglTexture can not be shared with a CoglGLES2Context then this function will return FALSE.

This api does not affect the lifetime of the CoglTexture and you must take care not to reference the returned handle after the
original texture has been freed.

Cogl 2.0 Reference Manual 318 / 328

Note This interface is only intended for sharing textures to read from. The behaviour is undefined if the texture is modified by a
GLES2 context.

Note This function will only return TRUE for low-level CoglTextures such as CoglTexture2D or CoglTexture3D but not for high
level meta textures such as CoglTexture2DSliced

Note The handle returned should not be passed directly to a system OpenGL ES 2.0 library, the handle is only intended to be
used via a CoglGLES2Vtable or via libcogl-gles2.

Parameters

texture A CoglTexture

handle
A return location for an
OpenGL ES 2.0 texture
handle

target
A return location for an
OpenGL ES 2.0 texture
target

Returns

TRUE if a handle and target could be returned otherwise FALSE is returned.

Since 2.0

Stability Level: Unstable

Types and Values

CoglGLES2Context

typedef struct _CoglGLES2Context CoglGLES2Context;

Represents an OpenGLES 2.0 api context used as a sandbox for OpenGLES 2.0 state. This is comparable to an EGLContext for
those who have used OpenGLES 2.0 with EGL before.

Since 1.12

Stability Level: Unstable

struct CoglGLES2Vtable

struct CoglGLES2Vtable {
};

Provides function pointers for the full OpenGLES 2.0 api. The api must be accessed this way and not by directly calling symbols
of any system OpenGLES 2.0 api.

Since 1.12

Stability Level: Unstable

Cogl 2.0 Reference Manual 319 / 328

enum CoglGLES2ContextError

Error codes that relate to the cogl_gles2_context api.

Members

COGL_GLES2_CONTEXT_ERROR_UNSUPPORTED

Creating
GLES2
con-
texts
isn’t
sup-
ported.
Ap-
pli-
ca-
tions
should
use
cogl_has_feature()
to
check
for
the
COGL_FEATURE_ID_GLES2_CONTEXT.

COGL_GLES2_CONTEXT_ERROR_DRIVER

An
un-
der-
ly-
ing
driver
er-
ror
oc-
cured.

Cogl 2.0 Reference Manual 320 / 328

Chapter 2

Glossaries

2.1 Annotation Glossary

A

allow-none
NULL is OK, both for passing and for returning.

array
Parameter points to an array of items.

C

closure
This parameter is a ’user_data’, for callbacks; many bindings can pass NULL here.

I

in
Parameter for input. Default is transfer none.

inout
Parameter for input and for returning results. Default is transfer full.

O

out
Parameter for returning results. Default is transfer full.

out caller-allocates
Out parameter, where caller must allocate storage.

Cogl 2.0 Reference Manual 321 / 328

S

scope call
The callback is valid only during the call to the method.

scope notified
The callback is valid until the GDestroyNotify argument is called.

Stable
The intention of a Stable interface is to enable arbitrary third parties to develop applications to these interfaces, release
them, and have confidence that they will run on all minor releases of the product (after the one in which the interface was
introduced, and within the same major release). Even at a major release, incompatible changes are expected to be rare, and
to have strong justifications.

T

transfer full
Free data after the code is done.

transfer none
Don’t free data after the code is done.

U

Unstable
Unstable interfaces are experimental or transitional. They are typically used to give outside developers early access to new
or rapidly changing technology, or to provide an interim solution to a problem where a more general solution is anticipated.
No claims are made about either source or binary compatibility from one minor release to the next. The Unstable interface
level is a warning that these interfaces are subject to change without warning and should not be used in unbundled products.
Given such caveats, customer impact need not be a factor when considering incompatible changes to an Unstable interface
in a major or minor release. Nonetheless, when such changes are introduced, the changes should still be mentioned in the
release notes for the affected release.

Cogl 2.0 Reference Manual 322 / 328

Appendix A

License

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for
more details.

You may obtain a copy of the GNU Library General Public License from the Free Software Foundation by visiting their Web site
or by writing to:

Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307
USA

http://www.fsf.org

Cogl 2.0 Reference Manual 323 / 328

Chapter 3

Index

A
CoglAttribute, 131
cogl_attribute_buffer_new, 124
cogl_attribute_buffer_new_with_size, 124
cogl_attribute_get_buffer, 130
cogl_attribute_get_normalized, 130
cogl_attribute_new, 127
cogl_attribute_set_buffer, 130
cogl_attribute_set_normalized, 129
CoglAttributeBuffer, 125
CoglAttributeType, 26

B
CoglBitmap, 155
COGL_BITMAP_ERROR, 154
cogl_bitmap_get_buffer, 154
cogl_bitmap_get_format, 152
cogl_bitmap_get_height, 153
cogl_bitmap_get_rowstride, 153
cogl_bitmap_get_size_from_file, 154
cogl_bitmap_get_width, 153
cogl_bitmap_new_for_data, 152
cogl_bitmap_new_from_buffer, 149
cogl_bitmap_new_from_file, 149
cogl_bitmap_new_with_size, 151
CoglBitmapError, 155
COGL_BLEND_STRING_ERROR, 62
CoglBlendStringError, 85
CoglBool, 28
CoglBuffer, 119
cogl_buffer_get_size, 114
cogl_buffer_get_update_hint, 115
cogl_buffer_map, 115
cogl_buffer_map_range, 116
cogl_buffer_set_data, 117
cogl_buffer_set_update_hint, 115
cogl_buffer_unmap, 117
CoglBufferAccess, 119
CoglBufferBit, 25
CoglBufferMapHint, 120
CoglBufferTarget, 25
CoglBufferUpdateHint, 119

C

CoglColor, 247
cogl_color_copy, 236
cogl_color_equal, 246
cogl_color_free, 236
cogl_color_get_alpha, 238
cogl_color_get_alpha_byte, 240
cogl_color_get_alpha_float, 241
cogl_color_get_blue, 238
cogl_color_get_blue_byte, 239
cogl_color_get_blue_float, 241
cogl_color_get_green, 238
cogl_color_get_green_byte, 239
cogl_color_get_green_float, 240
cogl_color_get_red, 238
cogl_color_get_red_byte, 239
cogl_color_get_red_float, 240
cogl_color_init_from_4f, 237
cogl_color_init_from_4fv, 237
cogl_color_init_from_4ub, 236
cogl_color_init_from_hsl, 246
cogl_color_premultiply, 245
cogl_color_set_alpha, 242
cogl_color_set_alpha_byte, 244
cogl_color_set_alpha_float, 245
cogl_color_set_blue, 242
cogl_color_set_blue_byte, 243
cogl_color_set_blue_float, 245
cogl_color_set_green, 242
cogl_color_set_green_byte, 243
cogl_color_set_green_float, 244
cogl_color_set_red, 241
cogl_color_set_red_byte, 243
cogl_color_set_red_float, 244
cogl_color_to_hsl, 247
cogl_color_unpremultiply, 246
CoglColorMask, 27
CoglContext, 50
cogl_context_get_display, 48
cogl_context_new, 48

D
cogl_depth_state_get_range, 97
cogl_depth_state_get_test_enabled, 95

Cogl 2.0 Reference Manual 324 / 328

cogl_depth_state_get_test_function, 96
cogl_depth_state_get_write_enabled, 96
cogl_depth_state_init, 94
cogl_depth_state_set_range, 97
cogl_depth_state_set_test_enabled, 94
cogl_depth_state_set_test_function, 95
cogl_depth_state_set_write_enabled, 96
CoglDepthState, 98
CoglDepthTestFunction, 98
CoglDisplay, 46
cogl_display_get_renderer, 45
cogl_display_new, 44
cogl_display_setup, 45

E
CoglError, 6
cogl_error_copy, 6
cogl_error_free, 5
cogl_error_matches, 5
CoglEuler, 283
cogl_euler_copy, 283
cogl_euler_equal, 282
cogl_euler_free, 283
cogl_euler_init, 281
cogl_euler_init_from_matrix, 282
cogl_euler_init_from_quaternion, 282

F
CoglFeatureCallback, 49
CoglFeatureID, 50
CoglFence, 298
cogl_fence_closure_get_user_data, 297
CoglFenceCallback, 297
CoglFenceClosure, 299
CoglFilterReturn, 40
cogl_foreach_feature, 50
COGL_FRAMEBUFFER, 192
CoglFramebuffer, 219
cogl_framebuffer_add_fence_callback, 297
cogl_framebuffer_allocate, 192
cogl_framebuffer_cancel_fence_callback, 298
cogl_framebuffer_clear, 201
cogl_framebuffer_clear4f, 202
cogl_framebuffer_discard_buffers, 210
cogl_framebuffer_draw_multitextured_rectangle, 207
cogl_framebuffer_draw_rectangle, 205
cogl_framebuffer_draw_rectangles, 208
cogl_framebuffer_draw_textured_rectangle, 205
cogl_framebuffer_draw_textured_rectangles, 209
cogl_framebuffer_finish, 210
cogl_framebuffer_frustum, 215
cogl_framebuffer_get_alpha_bits, 197
cogl_framebuffer_get_blue_bits, 196
cogl_framebuffer_get_color_mask, 198
cogl_framebuffer_get_context, 201
cogl_framebuffer_get_depth_bits, 197
cogl_framebuffer_get_dither_enabled, 204

cogl_framebuffer_get_green_bits, 196
cogl_framebuffer_get_height, 193
cogl_framebuffer_get_modelview_matrix, 214
cogl_framebuffer_get_projection_matrix, 217
cogl_framebuffer_get_red_bits, 196
cogl_framebuffer_get_samples_per_pixel, 198
cogl_framebuffer_get_viewport4fv, 195
cogl_framebuffer_get_viewport_height, 195
cogl_framebuffer_get_viewport_width, 195
cogl_framebuffer_get_viewport_x, 194
cogl_framebuffer_get_viewport_y, 194
cogl_framebuffer_get_width, 193
cogl_framebuffer_identity_matrix, 211
cogl_framebuffer_orthographic, 216
cogl_framebuffer_perspective, 215
cogl_framebuffer_pop_clip, 219
cogl_framebuffer_pop_matrix, 211
cogl_framebuffer_push_matrix, 211
cogl_framebuffer_push_primitive_clip, 218
cogl_framebuffer_push_rectangle_clip, 218
cogl_framebuffer_push_scissor_clip, 217
cogl_framebuffer_read_pixels, 203
cogl_framebuffer_read_pixels_into_bitmap, 202
cogl_framebuffer_resolve_samples, 200
cogl_framebuffer_resolve_samples_region, 200
cogl_framebuffer_rotate, 212
cogl_framebuffer_rotate_euler, 213
cogl_framebuffer_rotate_quaternion, 213
cogl_framebuffer_scale, 211
cogl_framebuffer_set_color_mask, 198
cogl_framebuffer_set_dither_enabled, 204
cogl_framebuffer_set_modelview_matrix, 214
cogl_framebuffer_set_projection_matrix, 217
cogl_framebuffer_set_samples_per_pixel, 199
cogl_framebuffer_set_viewport, 193
cogl_framebuffer_transform, 214
cogl_framebuffer_translate, 212
CoglFrameCallback, 224
CoglFrameClosure, 232
CoglFuncPtr, 8

G
cogl_gdl_display_set_plane, 46
cogl_get_rectangle_indices, 132
cogl_get_static_identity_quaternion, 294
cogl_get_static_zero_quaternion, 294
COGL_GLES2_CONTEXT_ERROR, 314
cogl_gles2_context_get_vtable, 315
cogl_gles2_context_new, 314
cogl_gles2_get_current_vtable, 316
cogl_gles2_texture_2d_new_from_handle, 317
cogl_gles2_texture_get_handle, 317
CoglGLES2Context, 318
CoglGLES2ContextError, 319
CoglGLES2Vtable, 318
COGL_GLIB_ERROR, 6
cogl_glib_renderer_source_new, 309

Cogl 2.0 Reference Manual 325 / 328

cogl_glib_source_new, 308
cogl_gtype_matrix_get_type, 313

H
cogl_has_feature, 48
cogl_has_features, 49

I
cogl_index_buffer_new, 126
CoglIndexBuffer, 127
CoglIndices, 132
cogl_indices_new, 132
CoglIndicesType, 132
cogl_is_attribute, 129
cogl_is_attribute_buffer, 125
cogl_is_bitmap, 149
cogl_is_buffer, 114
cogl_is_context, 47
cogl_is_display, 44
cogl_is_gles2_context, 314
cogl_is_index_buffer, 126
cogl_is_indices, 132
cogl_is_offscreen, 234
cogl_is_onscreen, 220
cogl_is_onscreen_template, 41
cogl_is_pipeline, 60
cogl_is_pixel_buffer, 118
cogl_is_primitive, 143
cogl_is_primitive_texture, 178
cogl_is_renderer, 29
cogl_is_snippet, 104
cogl_is_sub_texture, 169
cogl_is_texture, 156
cogl_is_texture_2d, 180
cogl_is_texture_2d_sliced, 174
cogl_is_texture_3d, 187
cogl_is_texture_pixmap_x11, 175
cogl_is_texture_rectangle, 190

M
CoglMatrix, 261
cogl_matrix_copy, 250
cogl_matrix_entry_calculate_translation, 270
cogl_matrix_entry_equal, 271
cogl_matrix_entry_get, 269
cogl_matrix_entry_is_identity, 271
cogl_matrix_entry_ref, 271
cogl_matrix_entry_unref, 272
cogl_matrix_equal, 251
cogl_matrix_free, 251
cogl_matrix_frustum, 251
cogl_matrix_get_array, 257
cogl_matrix_get_inverse, 257
cogl_matrix_init_from_array, 249
cogl_matrix_init_from_euler, 250
cogl_matrix_init_from_quaternion, 250
cogl_matrix_init_identity, 248

cogl_matrix_init_translation, 249
cogl_matrix_is_identity, 260
cogl_matrix_look_at, 253
cogl_matrix_multiply, 254
cogl_matrix_orthographic, 252
cogl_matrix_perspective, 253
cogl_matrix_project_points, 259
cogl_matrix_rotate, 255
cogl_matrix_rotate_euler, 255
cogl_matrix_rotate_quaternion, 255
cogl_matrix_scale, 256
cogl_matrix_stack_frustum, 266
cogl_matrix_stack_get, 269
cogl_matrix_stack_get_entry, 268
cogl_matrix_stack_get_inverse, 268
cogl_matrix_stack_load_identity, 264
cogl_matrix_stack_multiply, 265
cogl_matrix_stack_new, 263
cogl_matrix_stack_orthographic, 267
cogl_matrix_stack_perspective, 266
cogl_matrix_stack_pop, 263
cogl_matrix_stack_push, 263
cogl_matrix_stack_rotate, 265
cogl_matrix_stack_rotate_euler, 265
cogl_matrix_stack_rotate_quaternion, 265
cogl_matrix_stack_scale, 264
cogl_matrix_stack_set, 270
cogl_matrix_stack_translate, 264
cogl_matrix_transform_point, 258
cogl_matrix_transform_points, 258
cogl_matrix_translate, 256
cogl_matrix_transpose, 256
CoglMatrixEntry, 272
CoglMatrixStack, 272
cogl_meta_texture_foreach_in_region, 166
CoglMetaTexture, 167
CoglMetaTextureCallback, 166

O
CoglObject, 3
cogl_object_get_user_data, 2
cogl_object_ref, 1
cogl_object_set_user_data, 2
cogl_object_unref, 2
CoglOffscreen, 235
cogl_offscreen_new_with_texture, 234
COGL_ONSCREEN, 221
CoglOnscreen, 232
cogl_onscreen_add_dirty_callback, 226
cogl_onscreen_add_frame_callback, 225
cogl_onscreen_add_resize_callback, 228
cogl_onscreen_hide, 224
cogl_onscreen_new, 221
cogl_onscreen_remove_dirty_callback, 227
cogl_onscreen_remove_frame_callback, 226
cogl_onscreen_remove_resize_callback, 229
cogl_onscreen_set_swap_throttled, 231

Cogl 2.0 Reference Manual 326 / 328

cogl_onscreen_show, 223
cogl_onscreen_swap_buffers, 229
cogl_onscreen_swap_buffers_with_damage, 230
cogl_onscreen_swap_region, 231
cogl_onscreen_template_new, 41
cogl_onscreen_template_set_has_alpha, 42
cogl_onscreen_template_set_samples_per_pixel, 42
cogl_onscreen_template_set_swap_throttled, 42
CoglOnscreenDirtyCallback, 226
CoglOnscreenDirtyClosure, 233
CoglOnscreenDirtyInfo, 232
CoglOnscreenResizeCallback, 228
CoglOnscreenResizeClosure, 233
CoglOnscreenTemplate, 43
CoglOnscreenX11MaskCallback, 221

P
CoglPipeline, 81
cogl_pipeline_add_layer_snippet, 80
cogl_pipeline_add_snippet, 80
cogl_pipeline_copy, 59
cogl_pipeline_foreach_layer, 76
cogl_pipeline_get_color, 61
cogl_pipeline_get_color_mask, 66
cogl_pipeline_get_depth_state, 67
cogl_pipeline_get_layer_mag_filter, 70
cogl_pipeline_get_layer_min_filter, 70
cogl_pipeline_get_layer_point_sprite_coords_enabled, 75
cogl_pipeline_get_layer_texture, 69
cogl_pipeline_get_n_layers, 76
cogl_pipeline_get_per_vertex_point_size, 66
cogl_pipeline_get_point_size, 65
cogl_pipeline_get_uniform_location, 77
cogl_pipeline_new, 59
cogl_pipeline_remove_layer, 75
cogl_pipeline_set_alpha_test_function, 62
cogl_pipeline_set_blend, 62
cogl_pipeline_set_blend_constant, 64
cogl_pipeline_set_color, 60
cogl_pipeline_set_color4f, 61
cogl_pipeline_set_color4ub, 61
cogl_pipeline_set_color_mask, 66
cogl_pipeline_set_cull_face_mode, 68
cogl_pipeline_set_depth_state, 67
cogl_pipeline_set_front_face_winding, 68
cogl_pipeline_set_layer_combine, 72
cogl_pipeline_set_layer_combine_constant, 74
cogl_pipeline_set_layer_filters, 69
cogl_pipeline_set_layer_null_texture, 69
cogl_pipeline_set_layer_point_sprite_coords_enabled, 74
cogl_pipeline_set_layer_texture, 69
cogl_pipeline_set_layer_wrap_mode, 71
cogl_pipeline_set_layer_wrap_mode_p, 72
cogl_pipeline_set_layer_wrap_mode_s, 71
cogl_pipeline_set_layer_wrap_mode_t, 72
cogl_pipeline_set_per_vertex_point_size, 65
cogl_pipeline_set_point_size, 64

cogl_pipeline_set_uniform_1f, 77
cogl_pipeline_set_uniform_1i, 78
cogl_pipeline_set_uniform_float, 78
cogl_pipeline_set_uniform_int, 79
cogl_pipeline_set_uniform_matrix, 79
CoglPipelineAlphaFunc, 81
CoglPipelineCullFaceMode, 85
CoglPipelineFilter, 86
CoglPipelineLayerCallback, 76
CoglPipelineWrapMode, 90
cogl_pixel_buffer_new, 118
CoglPixelBuffer, 122
CoglPixelFormat, 22
cogl_poll_renderer_dispatch, 308
cogl_poll_renderer_get_info, 307
CoglPollFD, 312
CoglPollFDEvent, 309
cogl_pop_gles2_context, 316
CoglPrimitive, 148
cogl_primitive_copy, 146
cogl_primitive_draw, 147
cogl_primitive_foreach_attribute, 147
cogl_primitive_get_first_vertex, 143
cogl_primitive_get_indices, 145
cogl_primitive_get_mode, 144
cogl_primitive_get_n_vertices, 143
cogl_primitive_new, 134
cogl_primitive_new_p2, 135
cogl_primitive_new_p2c4, 137
cogl_primitive_new_p2t2, 139
cogl_primitive_new_p2t2c4, 141
cogl_primitive_new_p3, 136
cogl_primitive_new_p3c4, 138
cogl_primitive_new_p3t2, 140
cogl_primitive_new_p3t2c4, 142
cogl_primitive_new_with_attributes, 134
cogl_primitive_set_attributes, 145
cogl_primitive_set_first_vertex, 143
cogl_primitive_set_indices, 145
cogl_primitive_set_mode, 144
cogl_primitive_set_n_vertices, 144
cogl_primitive_texture_set_auto_mipmap, 178
CoglPrimitiveAttributeCallback, 146
CoglPrimitiveTexture, 180
cogl_push_gles2_context, 315

Q
CoglQuaternion, 294
cogl_quaternion_copy, 288
cogl_quaternion_dot_product, 290
cogl_quaternion_equal, 288
cogl_quaternion_free, 289
cogl_quaternion_get_rotation_angle, 289
cogl_quaternion_get_rotation_axis, 289
cogl_quaternion_init, 285
cogl_quaternion_init_from_angle_vector, 286
cogl_quaternion_init_from_array, 286

Cogl 2.0 Reference Manual 327 / 328

cogl_quaternion_init_from_euler, 288
cogl_quaternion_init_from_x_rotation, 287
cogl_quaternion_init_from_y_rotation, 287
cogl_quaternion_init_from_z_rotation, 287
cogl_quaternion_init_identity, 285
cogl_quaternion_invert, 290
cogl_quaternion_multiply, 290
cogl_quaternion_nlerp, 292
cogl_quaternion_normalize, 289
cogl_quaternion_pow, 292
cogl_quaternion_slerp, 292
cogl_quaternion_squad, 293

R
CoglReadPixelsFlags, 56
CoglRenderer, 36
cogl_renderer_add_constraint, 32
cogl_renderer_connect, 30
cogl_renderer_get_n_fragment_texture_units, 30
cogl_renderer_get_winsys_id, 31
cogl_renderer_new, 30
cogl_renderer_remove_constraint, 32
cogl_renderer_set_winsys_id, 31
CoglRendererConstraint, 38

S
cogl_sdl_context_new, 303
cogl_sdl_handle_event, 304
cogl_sdl_idle, 305
cogl_sdl_onscreen_get_window, 305
cogl_sdl_renderer_get_event_type, 304
cogl_sdl_renderer_set_event_type, 304
CoglSnippet, 108
cogl_snippet_get_declarations, 105
cogl_snippet_get_hook, 104
cogl_snippet_get_post, 107
cogl_snippet_get_pre, 106
cogl_snippet_get_replace, 106
cogl_snippet_new, 103
cogl_snippet_set_declarations, 105
cogl_snippet_set_post, 107
cogl_snippet_set_pre, 105
cogl_snippet_set_replace, 106
CoglSnippetHook, 108
cogl_sub_texture_new, 168
CoglSubTexture, 169

T
CoglTexture, 162
CoglTexture2D, 184
CoglTexture2DSliced, 174
CoglTexture3D, 188
cogl_texture_2d_gl_new_from_foreign, 183
cogl_texture_2d_new_from_bitmap, 182
cogl_texture_2d_new_from_data, 182
cogl_texture_2d_new_from_file, 181
cogl_texture_2d_new_with_size, 181

cogl_texture_2d_sliced_new_from_bitmap, 173
cogl_texture_2d_sliced_new_from_data, 172
cogl_texture_2d_sliced_new_from_file, 171
cogl_texture_2d_sliced_new_with_size, 170
cogl_texture_3d_new_from_bitmap, 185
cogl_texture_3d_new_from_data, 186
cogl_texture_3d_new_with_size, 185
cogl_texture_allocate, 156
COGL_TEXTURE_ERROR, 156
cogl_texture_get_components, 161
cogl_texture_get_data, 158
cogl_texture_get_height, 157
cogl_texture_get_premultiplied, 162
cogl_texture_get_width, 157
cogl_texture_is_sliced, 158
cogl_texture_pixmap_x11_is_using_tfp_extension, 176
cogl_texture_pixmap_x11_new, 175
cogl_texture_pixmap_x11_set_damage_object, 177
cogl_texture_pixmap_x11_update_area, 176
cogl_texture_rectangle_new_from_bitmap, 189
cogl_texture_rectangle_new_with_size, 188
cogl_texture_set_components, 161
cogl_texture_set_data, 158
cogl_texture_set_premultiplied, 162
cogl_texture_set_region, 159
CoglTextureComponents, 164
CoglTextureError, 163
CoglTexturePixmapX11, 177
CoglTexturePixmapX11ReportLevel, 177
CoglTextureRectangle, 190
CoglTextureType, 163

U
CoglUserDataDestroyCallback, 4
CoglUserDataKey, 3

V
cogl_vector3_add, 276
cogl_vector3_copy, 275
cogl_vector3_cross_product, 278
cogl_vector3_distance, 280
cogl_vector3_divide_scalar, 277
cogl_vector3_dot_product, 279
cogl_vector3_equal, 274
cogl_vector3_equal_with_epsilon, 274
cogl_vector3_free, 275
cogl_vector3_init, 273
cogl_vector3_init_zero, 274
cogl_vector3_invert, 276
cogl_vector3_magnitude, 278
cogl_vector3_multiply_scalar, 277
cogl_vector3_normalize, 277
cogl_vector3_subtract, 276
COGL_VERSION, 302
COGL_VERSION_CHECK, 300
COGL_VERSION_ENCODE, 299
COGL_VERSION_GET_MAJOR, 300

Cogl 2.0 Reference Manual 328 / 328

COGL_VERSION_GET_MICRO, 301
COGL_VERSION_GET_MINOR, 300
COGL_VERSION_MAJOR, 301
COGL_VERSION_MICRO, 301
COGL_VERSION_MINOR, 301
COGL_VERSION_STRING, 301
CoglVertexP2, 8
CoglVertexP2C4, 10
CoglVertexP2T2, 13
CoglVertexP2T2C4, 16
CoglVertexP3, 9
CoglVertexP3C4, 11
CoglVertexP3T2, 14
CoglVertexP3T2C4, 18
CoglVerticesMode, 20

W
cogl_wayland_display_set_compositor_display, 46
cogl_wayland_renderer_get_display, 36
cogl_wayland_renderer_set_event_dispatch_enabled, 35
cogl_wayland_renderer_set_foreign_display, 35
cogl_win32_onscreen_get_window, 223
cogl_win32_onscreen_set_foreign_window, 223
cogl_win32_renderer_add_filter, 33
cogl_win32_renderer_handle_event, 34
cogl_win32_renderer_remove_filter, 34
cogl_win32_renderer_set_event_retrieval_enabled, 35
CoglWin32FilterFunc, 33
CoglWinding, 86
CoglWinsysID, 36

X
cogl_x11_onscreen_get_visual_xid, 222
cogl_x11_onscreen_get_window_xid, 222
cogl_x11_onscreen_set_foreign_window_xid, 221
cogl_xlib_renderer_add_filter, 33
cogl_xlib_renderer_get_foreign_display, 33
cogl_xlib_renderer_handle_event, 33
cogl_xlib_renderer_remove_filter, 33
cogl_xlib_renderer_set_foreign_display, 32
CoglXlibFilterFunc, 33

	Cogl - a modern 3D graphics API
	About Cogl
	General API concepts
	The Object Interface
	Exception handling
	Common Types

	Setting Up A Drawing Context
	CoglRenderer: Connect to a backend renderer
	CoglOnscreenTemplate: Describe a template for onscreen framebuffers
	CoglDisplay: Setup a display pipeline
	The Top-Level Context

	Setting Up A GPU Pipeline
	Blend Strings
	Some examples
	Here's the syntax
	Pipeline
	Depth State
	Shader snippets

	Allocating GPU Memory
	CoglBuffer: The Buffer Interface
	CoglAttributeBuffer: Buffers of vertex attributes
	CoglIndexBuffer: Buffers of vertex indices

	Describing the layout of GPU Memory
	Vertex Attributes
	Indices

	Geometry
	Primitives
	Path Primitives

	Textures
	Bitmap
	The Texture Interface

	Meta Textures
	High Level Meta Textures
	Sub Textures
	Sliced Textures
	X11 Texture From Pixmap

	Primitive Textures
	Low-level primitive textures
	2D textures
	3D textures
	Rectangle textures (non-normalized coordinates)

	Framebuffers
	CoglFramebuffer: The Framebuffer Interface
	CoglOnscreen: The Onscreen Framebuffer Interface
	Offscreen Framebuffers

	Utilities
	Color Type
	Matrices
	Matrix Stacks
	3 Component Vectors
	Eulers (Rotations)
	Quaternions (Rotations)
	GPU synchronisation fences
	Versioning utility macros

	Binding and Integrating
	SDL Integration
	Main loop integration
	GType Integration API
	GLES 2.0 context

	Glossaries
	Annotation Glossary

	License
	Index

